Advertisement

Symbiosis

pp 1–13 | Cite as

Interaction between Piriformospora indica and Azotobacter chroococcum diminish the effect of salt stress in Artemisia annua L. by enhancing enzymatic and non-enzymatic antioxidants

  • Monika Arora
  • Parul Saxena
  • M. Z. Abdin
  • Ajit VarmaEmail author
Article
  • 13 Downloads

Abstract

Artemisia annua is a medicinal plant known for artemisinin, a potential anti-malarial drug. In this study, we investigated how the mutualistic and synergistic interaction between Piriformospora indica (Pi) and Azotobacter chroococcum (Az) ameliorates the damaging effects of salinity on A. annua L. Our findings revealed that dual treated plants had better plant height, dry weights of shoot and root under salt stress than the un-inoculated ones. During salt stress, microbial treated plants reduced the oxidative damage in plants by decreasing the concentrations of MDA [Pi (up to 44%), Az (up to 22%), Pi+Az (up to 61%)], and H2O2 [Pi (up to 45%), Az (up to 28%), Pi+Az up to 57%)]. It was unveiled that the enhancement in activities of enzymatic and non-enzymatic antioxidants is probably the main mechanism underlying salt tolerance in microbial treated plants. During salt stress, dual inoculation of Pi and Az resulted an enhanced activities of antioxidant enzyme (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) and non-enzymatic antioxidants (total flavonoids, phenolics and carotenoids). Also, increase in artemisinin (56–64%) and proline (82–88%) content was recorded in co-inoculated plants (Pi+Az). These findings demonstrated the potentiality of Pi and Az dual symbiosis act as bio-ameliorator under saline conditions. This tripartite plant-microbial relationship could be a promising practice to alleviate the negative impact of salt stress on the productivity of medicinal plants.

Keywords

Salt stress Piriformospora indica Azotobacter chroococcum Antioxidant enzymes Non-enzymatic antioxidants Artemisia annua 

Notes

References

  1. Abadi VAJM, Sepehri M (2015) Effect of Piriformospora indica and Azotobacter chroococcum on mitigation of zinc deficiency stress in wheat (Triticum aestivum L.). Symbiosis 69:9–19.  https://doi.org/10.1007/s13199015-0361-z CrossRefGoogle Scholar
  2. Abd El-Ghany TM, Masrahi YS, Mohamed A, Abboud A, Alawlaqi MM, Elhussieny A (2015) Maize (Zea Mays L.) growth and metabolic dynamics with plant growth-promoting Rhizobacteria under salt stresses. J plant Pathol Microbiol 6:305.  https://doi.org/10.4172/2157-7471.1000305
  3. Abd_Allah EF, Hashem A, Alqarawi AA, Bahkali AH, Alwhibi MS (2015) Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) Merr using arbuscular mycorrhiza fungi under salt stress. Saudi J Biol Sci 22:274–283.  https://doi.org/10.1016/j.sjbs.2015.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Abdel Latef AAH, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127:228–233.  https://doi.org/10.1016/j.scienta.2010.09.020 CrossRefGoogle Scholar
  5. AbdElgawad H, Zinta G, Hegab MM, Pandey R, Asard H, Abuelsoud W (2016) High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Front Plant Sci 7:276.  https://doi.org/10.3389/fpls.2016.00276 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aebi H (1984) Catalases in vitro. Methods Enzymol 105:121–126PubMedCrossRefGoogle Scholar
  7. Aftab T, Khan MMA, Idrees M, Naeem M, Hashmi N, Moinuddin (2010a) Effect of salt stress on growth, membrane damage, antioxidant metabolism and artemisinin accumulation in Artemisia annua L. Plant Stress 80:60–68Google Scholar
  8. Aftab T, Khan MMA, Idrees M, Naeem M, Ram M (2010b) Boron induced oxidative stress, antioxidant defence response and changes in artemisinin content in Artemisia annua L. J Agron Crop Sci.  https://doi.org/10.1111/j.1439-037X.2010.00427.x CrossRefGoogle Scholar
  9. Aftab T, Khan MMA, Teixeira da Silva JA, Idrees M, Naeem M, Moinuddin (2011) Role of salicylic acid in promoting salt stress tolerance and enhanced artemisinin production in Artemisia annua L. J Plant Growth Regul 30:425–435CrossRefGoogle Scholar
  10. Aghaei K, Komatsu S (2013) Crops and medicinal plants proteomics in response to salt stress. Front Plant Sci 31:4–8.  https://doi.org/10.3389/fpls.2013.00008 CrossRefGoogle Scholar
  11. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181.  https://doi.org/10.1016/j.micres.2006.04.001 CrossRefPubMedGoogle Scholar
  12. Ahmad P, Jaleel C, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175.  https://doi.org/10.3109/07388550903524243 CrossRefPubMedGoogle Scholar
  13. Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D, Gucel S (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front Plant Sci 6:868.  https://doi.org/10.3389/fpls.2015.00868 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ahmed SA, Ibrahim AK, Gouda MS, Mohamed WW, Khattab S (2016) Diatomite alleviates the adverse effects of salinity stress on growth and yield of Stevia rebaudiana. Int J Adv Biotechnol Res 7:10–21Google Scholar
  15. Aly MM, El-Sabbagh SM, El-Shouny WA, Ebrahim MKH (2003) Physiological response of Zea mays to NaCl stress with respect to Azotobacter chroococcum and Streptomyces niveus. Pak J Biol Sci 6:2073–2080CrossRefGoogle Scholar
  16. Arnon DI (1949) Copper enzyme in isolated chloroplast polyphenoloxidase in Beta vulgaris L. Plant Physiol 24:1–15PubMedPubMedCentralCrossRefGoogle Scholar
  17. Arora M, Saxena P, Choudhary DK, Abdin MZ, Varma A (2016) Dual symbiosis between Piriformospora indica and Azotobacter chroococcum enhances the artemisinin content in Artemisia annua L. World J Microbiol Biotechnol 32:19.  https://doi.org/10.1007/s11274-015-1972-5 CrossRefPubMedGoogle Scholar
  18. Arora M, Saxena P, Abdin MZ, Varma A (2018) Interaction between Piriformospora indica and Azotobacter chroococcum governs better plant physiological and biochemical parameters in Artemisia annua L. plants grown under in vitro conditions. Symbiosis.  https://doi.org/10.1007/s13199-017-0519-y CrossRefGoogle Scholar
  19. Awasthi A, Bharti N, Nair P, Singh R, Shukla AK, Gupta MM, Darokar MP, Kalra A (2011) Synergistic effect of Glomus mosseae and nitrogen fixing Bacillus subtilis strain Daz26 on artemisinin content in Artemisia annua L. Appl Soil Ecol 49:125–130.  https://doi.org/10.1016/j.apsoil.2011.06.005 CrossRefGoogle Scholar
  20. Bagheri AA, Saadatmand S, Niknam V, Nejadsatari T, Babaeizad V (2013) Effect of endophytic fungus, Piriformospora indica, on growth and activity of antioxidant enzymes of rice (Oryza sativa L.) under salinity stress. Int J Adv Biol Biomed Res 1:1337–1350Google Scholar
  21. Bahadori MB, Valizadeh H, Asghari B, Dinparast L, Farimani MM, Bahadori S (2015) Chemical composition and antimicrobial, cytotoxicity, antioxidant and enzyme inhibitory activities of Salvia spinosa L. Funct Foods 18:727–736CrossRefGoogle Scholar
  22. Bahadori MB, Valizadeh H, Asghari B, Dinparast L, Bahadori S, Moridi Farimani M (2016) Biological activities of Salvia santolinifolia Boiss. A multifunctional medicinal plant. Curr Bioact Compd 12:297–305CrossRefGoogle Scholar
  23. Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schafer P, Schwarczinger I, Zuccaro A, Skoczowski A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510.  https://doi.org/10.1111/j.1469-8137.2008.02583.x CrossRefPubMedGoogle Scholar
  24. Bates LS, Waldran RP, Teare ID (1973) Rapid determination of free proline for water studies. Plant Soil 39:205–208CrossRefGoogle Scholar
  25. Bharti N, Barnawal D, Awasthi A, Yadav A, Kalra A (2014) Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in Mentha arvensis. Acta Physiol Plant 36:45–60CrossRefGoogle Scholar
  26. Chaturvedi P, Bisht D, Tiwari PS (2014) Effects of temperature, moisture and salinity on seed germination of Artemisia annua L. grown under Tarai conditions of Uttarakhand. J Appl Hortic 16:231–234Google Scholar
  27. Chaudhary D, Narula N, Sindhu SS, Behl RK (2013) Plant growth stimulation of wheat (Triticum aestivum L.) by inoculation of salinity tolerant Azotobacter strains. Physiol Mol Biol Plants 19:515–519PubMedPubMedCentralCrossRefGoogle Scholar
  28. Daghaghian H, Mortazaie Nejad F, Bahreininejad B (2017) Physiological response of the medicinal plant artichoke (Cynara scolymus L.) to exogenous salicylic acid under field saline conditions. J Hortic Sci Biotechnol.  https://doi.org/10.1080/14620316.2016.1205960
  29. Dhindsa RS, Plumb-Dhindsa PL, Reid DM (1982) Leaf senescence and lipid peroxidation: effects of some phytohormones, and scavengers of free radicals and singlet oxygen. Physiol Plant 56:453–457.  https://doi.org/10.1111/j.1399-3054.1982.tb04539.x CrossRefGoogle Scholar
  30. Dodd IC, Perez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428PubMedCrossRefGoogle Scholar
  31. Egamberdieva D, Wirth S, Jabborova D, Räsänen LA, Berg G, Liao H (2017) Coordination between Bradyrhizobium and root colonizing Pseudomonas alleviates salt stress in soybean (Glycine max L.) through altering root system architecture and improving nodulation. J Plant Interac 12:100–107.  https://doi.org/10.1080/17429145.2017.1294212 CrossRefGoogle Scholar
  32. Evelin H, Kapoor R (2014) Arbuscular mycorrhizal symbiosis modules antioxidant response in salt stressed Trigonella foenum-graecum plants. Mycorrhiza 24:197–208PubMedCrossRefGoogle Scholar
  33. Evelin H, Devi TS, Gupta S, Kapoor R (2019) Mitigation of Salinity Stress in Plants by Arbuscular Mycorrhizal Symbiosis: Current Understanding and New Challenges. Front Plant Sci.  https://doi.org/10.3389/fpls.2019.00470
  34. Felicia V, Russia P, Ingraffia R, Giambalvo D, Frenda AS, Martinelli F (2017) Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat. PLoS One 12:e0184158.  https://doi.org/10.1371/journal.pone.0184158 CrossRefGoogle Scholar
  35. Foyer CH, Noctor G (2005) Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071CrossRefGoogle Scholar
  36. Garg N, Manchanda G (2009) Role of Arbuscular Mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by salinity in Cajanus cajan (L.) Millsp. (pigeonpea). J Agron crop Sci.  https://doi.org/10.1111/j.1439-037X.2008.00349.x CrossRefGoogle Scholar
  37. Gengmao Z, Quanmei S, Yu H, Shihui L, Changhai W (2014) The physiological and biochemical responses of a medicinal plant (Salvia miltiorrhiza L.) to stress caused by various concentrations of NaCl. PLoS ONE 9 (2): e89624.  https://doi.org/10.1371/journal.pone.0089624 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gharsallah C, Fakhfakh H, Grubb D, Gorsane F (2016) Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB plants 8: plw055.  https://doi.org/10.1093/aobpla/plw055 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gil A, De La Fuente EB, Lenardis AE, Loopez Pereira M, Suárez SA, Bandoni A, Van Baren C, Di Leo LP, Ghersa CM (2002) Coriander essential oil composition from two genotypes grown in different environmental conditions. J Agric Food Chem 50:2870–2877PubMedCrossRefGoogle Scholar
  40. Guo C, Liu CZ, Ye HC, Li GF (2004) Effect of temperature ongrowth and artemisinin biosynthesis in hairy root cultures of Artemisia annua. Acta Botanica Boreali-Occidentalia Sinica 24:1828–1831Google Scholar
  41. Guo XX, Yang XQ, Yang RY, Zeng QP (2010) Salicylic acid and methyl jasmonate but not rose Bengal enhance artemisinin production through involving burst of endogenous singlet oxygen. Plant Sci 178:390–397CrossRefGoogle Scholar
  42. Habib SH, Kausar H, Saud HM (2016) Plant growth promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging system. Biomed Res Int.  https://doi.org/10.1155/2016/6284547 CrossRefGoogle Scholar
  43. Hashem A, Abd_Allah EF, Alqarawi AA, Al-Huqail AA, Wirth S, Egamberdieva D (2016) The interaction between Arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Front Microbiol 7:1089.  https://doi.org/10.3389/fmicb.2016.01089 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Hashem A, Alqarawi AA, Radhakrishnan R, Al-Arjani AF, Aldehaish HA, Egamberdieva D, Abd_Allah EF (2018) Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J Biol Sci 25:1102–1114PubMedPubMedCentralCrossRefGoogle Scholar
  45. Health RL, Packer I (1968) Photoperoxidation in isolated chloroplast: I. kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198CrossRefGoogle Scholar
  46. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn 347:32Google Scholar
  47. Ikram NKBK, Simonsen HT (2017) A review of biotechnological artemisinin production in plants. Front Plant Sci 8Google Scholar
  48. Jain M, Mathur G, Koul S, Sarin N (2001) Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Rep 20:463–468CrossRefGoogle Scholar
  49. Jogawat A, Saha S, Bakshi M, Dayaman V, Kumar M, Dua M, Varma A, Oelmüller R, Tuteja N, Johri AK (2013) Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signal Behav 8:e26891PubMedCentralCrossRefPubMedGoogle Scholar
  50. Kang S-M, Khan AL, Muhammad W, You Y-H, Kim J-H, Kim J-G, Hamayun M, Lee I-J (2014) Plant growth promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus, J. Plant Interact 9:673–682.  https://doi.org/10.1080/17429145.2014.894587 CrossRefGoogle Scholar
  51. Kapoor R, Chaudhary V, Bhatnagar AK (2007) Effects of arbuscular mycorrhizal and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17:581–587PubMedCrossRefGoogle Scholar
  52. Karthikeyan A, Sakthivel KM (2011) Efficacy of Azotobacter chroococcum in rooting and growth of Eucalyptus camaldulensis stem cuttings. Res J Microbiol 6:618–624CrossRefGoogle Scholar
  53. Kasim WA, Gaafar RM, Abou-Ali RM, Omar MN, Hewait HM (2016) Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Ann Agric Sci 61:217–227CrossRefGoogle Scholar
  54. Kayani WK, Kiani BH, Dilshad E, Mirza B (2018) Biotechnological approaches for artemisinin production in Artemisia. World J Microbiol Biotechnol 34:54PubMedPubMedCentralCrossRefGoogle Scholar
  55. Khademian R, Asghari B, Sedaghati B, Yaghoubian Y (2019) Plant beneficial rhizospheric microorganisms (PBRMs) mitigate deleterious effects of salinity in sesame (Sesamum indicum L.): Physio-biochemical properties, fatty acids composition and secondary metabolites content. Ind Crop Prod 136:129–139CrossRefGoogle Scholar
  56. Khatabi B, Molitor A, Lindermayr C, Pfiffi S, Durner J, vonWettstein D, Kogel KH, Schäfer P (2012) Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica. PLoSOne 7:e35502CrossRefGoogle Scholar
  57. Kilam D, Saifi M, Abdin MZ, Agnihotri A, Varma A (2015) Combined effects of Piriformospora indica and Azotobacter chroococcum enhance plant growth, antioxidant potential and steviol glycoside content in Stevia rebaudiana. Symbiosis 66:149–156CrossRefGoogle Scholar
  58. Kohler J, Caravaca F, Carrasco L, Roldan A (2007) Interaction between a PGPR, an AM fungus and a phosphate solubilizing fungus in the rhizosphere of Lactuca sativa. Appl Soil Ecol 35:480–487CrossRefGoogle Scholar
  59. Kotchoni SO, Kuhns C, Ditzer A, Kirch HH, Bartels D (2006) Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant Cell Environ 29:1033–1048PubMedCrossRefGoogle Scholar
  60. Kumar A, Sharma S, Misra S (2015) Evaluating effect of arbuscular mycorrhizal fungal consortia and Azotobacter chroococcum in improving biomass yield of Jatropha curcas. Plant Biosyst.  https://doi.org/10.1080/11263504.2014.1001001 CrossRefGoogle Scholar
  61. Kumari S, Vaishnav A, Jain S, Varma A, Choudhary DK (2016) Induced drought tolerance through wild and mutant bacterial strain Pseudomonas simiae in mung bean (Vigna radiate L.). World J Microbiol Biotechnol 32(4).  https://doi.org/10.1007/s11274-015-1974-3
  62. Liu C-Z, Guo C, Wang Y-C, Ouyang F (2002) Effect of light irradiation on hairy root growth and artemisinin biosynthesis of Artemisia annua L. process. Biochem 38:581–585.  https://doi.org/10.1016/S0032-9592(02)00165-6 CrossRefGoogle Scholar
  63. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonisation of roots by vesicular arbuscular mycorrhizal fungi. New Phytol 115:495–501CrossRefGoogle Scholar
  64. Misra N, Gupta AK (2006) Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. J Plant Physiol 163:11–18.  https://doi.org/10.1016/j.jplph.2005.02.011 CrossRefPubMedGoogle Scholar
  65. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410PubMedCrossRefGoogle Scholar
  66. Nadeem SM, Ahmadm M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448.  https://doi.org/10.1016/j.biotechadv.2013.12.005 CrossRefPubMedGoogle Scholar
  67. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880Google Scholar
  68. Namuli A, Bazira J, Casim TU, Engeu PO (2018) A review of various efforts to increase artemisinin and other antimalarial compounds in Artemisia Annua L plant. Cog Biol 4:1–8Google Scholar
  69. Nguyen KT, Arsenault P, Weathers PJ (2011) Trichomes + roots + ROS = artemisinin: regulating artemisinin biosynthesis in Artemisia annua L. In Vitro Cell Dev Biol Plant 47:329–338PubMedPubMedCentralCrossRefGoogle Scholar
  70. Pedranzani H, Rodriguez-Rivera M, Gutierrez M, Porcel R, Hause B (2016) Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating and jasmonate levels. Mycorrhiza 26:141–152PubMedCrossRefGoogle Scholar
  71. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and VAM fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161CrossRefGoogle Scholar
  72. Prajapati K, Yami KD, Singh A (2008) Plant growth promotional effect of Azotobacter chroococcum, Piriformospora indica and Vermicompost on Rice Plant. Nepal J Sci Technol 9:85–90CrossRefGoogle Scholar
  73. Pu GB, Ma DM, Chen JL, Ma LQ, Wang H, Li GF, Ye HC, Liu BY (2009) Salicylic acid activates artemisinin biosynthesis in Artemisia annua L. Plant Cell Rep 28:1127–1135PubMedCrossRefGoogle Scholar
  74. Qian ZH, Gong K, Zhang L, Lv JB, Jing F, Wang Y, Guan S, Wang G, Tang K (2007) A simple and efficient procedure to enhance artemisinin content in Artemisia annua L. by seeding to salinity stress. Afr J Biotechnol 6:1410–1413Google Scholar
  75. Qureshi MI, Israr M, Abdin MZ, Iqbal M (2005) Responses of Artemisia annua L. to lead and salt-induced oxidative stress. Environ Exper Bot 53:185–193CrossRefGoogle Scholar
  76. Rabie GH, Almadini AM (2005) Role of bio-inoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4:210–222Google Scholar
  77. Rabie GH, Aboul-Nasr MB, Al-Humainy A (2005) Increased salinity tolerance of cowpea plants by dual inoculation of an Arbuscular Mycorrhizal fungus Glomus clarum and a nitrogen-fixer Azospirillum brasilense. Mycobiology 33:51–60PubMedPubMedCentralCrossRefGoogle Scholar
  78. Rai M, Varma A (2005) Arbuscular mycorrhiza-like biotechnological potential of Piriformospora indica, which promotes the growth of Adhatoda asica Nees. Electron J Biotechnol 8:107–112.  https://doi.org/10.2225/vol8-issue1-fulltext-5 CrossRefGoogle Scholar
  79. Rai R, Meena RP, Smita SS, Shukla A, Rai SK, Pandey-Rai S (2011) UV-B and UV-C pre-treatments induce physiological changes and artemisinin biosynthesis in Artemisia annua L.-an antimalarial plant. J Photochem Photobiol 105:216–225.  https://doi.org/10.1016/j.jphotobiol.2011.09.004 CrossRefGoogle Scholar
  80. Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144CrossRefGoogle Scholar
  81. Sharma P, Kharkwal AC, Abdin MZ, Varma A (2016) Piriformospora indica-mediated salinity tolerance in Aloe vera plantlets. Symbiosis 72:103–115.  https://doi.org/10.1007/s13199-016-0449-0 CrossRefGoogle Scholar
  82. Shohael AM, Ali MB, Yu K-W (2006) Effect of temperature on secondary metabolites production and antioxidant enzyme activities in Eleutherococcus senticosus somatic embryos. Plant Cell Tissue Organ Cult 85:219–228.  https://doi.org/10.1007/s11240-005-9075-x CrossRefGoogle Scholar
  83. Silva-Ortega CO, Ochoa-Alfaro AE, Reyes-Agüerob JA, Aguado-Santacruz GA, Jimenez-Bremont JF (2008) Salt stress increases the expression of P5CS gene and induces proline accumulation in cactus pear. Plant Physiol Biochem 46:82–92PubMedCrossRefGoogle Scholar
  84. Smith IK, Vierheller TL, Thorne CA (1989) Properties and functions of glutathione reductase in plants. Physiol Plant 77:449–456CrossRefGoogle Scholar
  85. Soni P, Abdin MZ (2016) Water deficit-induced oxidative stress affects artemisinin content and expression of proline metabolic genes in Artemisia annua L. FEBS Open Bio.  https://doi.org/10.1002/2211-5463.12184 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Soshinkova TN, Radyukina NL, Korolkova DV, Nosov AV (2013) Proline and functioning of the antioxidant system in Thellungiella salsuginea plants and cultured cells subjected to oxidative stress. Russ J Plant Physiol 60:41–54CrossRefGoogle Scholar
  87. Tunc-Ozdemir M, Miller G, Song L, Kim J, Sodek A, Koussevitzky S, Misra AN, Mittler R, Shintani D (2009) Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiol 151:421–432PubMedPubMedCentralCrossRefGoogle Scholar
  88. Vafadar F, Amooaghaie R, Otroshy M (2014) Effects of plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. J Plant Interact 9:128–136CrossRefGoogle Scholar
  89. Valifard M, Mohsenzadeh S, Kholdebarin B, Rowshan V (2014) Effects of salt stress on volatile compounds, total phenolic content and antioxidant activities of Salvia mirzayanii. S Afr J Bot 93:92–97CrossRefGoogle Scholar
  90. Van Oosten MJ, Di Stasio E, Cirillo V, Silletti S, Ventorino V, Pepe O et al (2018) Root inoculation with Azotobacter chroococcum 76A enhances tomato plants adaptation to salt stress under low N conditions. BMC Plant Biol 18:205.  https://doi.org/10.1186/s12870-018-1411-5 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Varma A, Singh A, Sudha M, Sahay NS, Sharma J, Roy A, Kumari M, Rana D, Thakran S, Deka D, Bharti K, Hurek T, Blechert O, Rexer K-H, Kost G, Hahn A, Maier W, Walter M, Strack D, Kranner I (2001) Piriformospora indica: a cultivable mycorrhiza-like endosymbiotic fungus. In: Hock B (ed) The Mycota IX. Springer-Verlag, Berlin, pp 125–150Google Scholar
  92. Wallaart TE, Pras N, Beekman AC, Quax WJ (2000) Seasonal variation of artemisinin and its biosynthetic precursors in plants of Artemisia annua of different geographical origin: proof for the existence of chemotypes. Planta Med 66:57–62PubMedCrossRefGoogle Scholar
  93. Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, van Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. PNAS 102:13386–13391PubMedCrossRefGoogle Scholar
  94. Wang L, Li W, Ma L, Chen J, Lu H, Jian T (2016) Salt stress changes chemical composition in Limonium bicolor (bag.) Kuntze, a medicinal halophytic plant. Ind Crop Prod 84:248–253CrossRefGoogle Scholar
  95. WHO (2017) World Malaria Report:2017Google Scholar
  96. Xuan L, Zhao M, Guo L, Huang L (2012) Effect of cadmium on photosynthetic pigments, lipid peroxidation, antioxidants, and artemisinin in hydroponically grown Artemisia annua. J Environ Sci 24:1511–1518CrossRefGoogle Scholar
  97. Yang S-J, Zhang Z-L, Xue Y-X, Zhang Z-F, Shi S-Y (2014) Arbuscular mycorrhizal fungi increase salt tolerance of apple seedlings. Bot Stud 55:70PubMedPubMedCentralCrossRefGoogle Scholar
  98. Yousefi S, Kartoolinejad D, Bahmani M, Naghdi R (2016) Effect of Azospirillum lipoferum and Azotobacter chroococcum on germination and early growth of Hopbush shrub (Dodonaea viscosa L.) under salinity stress. J sustain for.  https://doi.org/10.1080/10549811.2016.1256220 CrossRefGoogle Scholar
  99. Zarea MJ, Hajinia S, Karimi N, Mohammadi Goltapeh E, Rejali F, Varma A (2012) Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effect of NaCl. Soil Biol Biochem 45:139–146CrossRefGoogle Scholar
  100. Zhao SS, Zeng MY (1986) Determination of qinghaosu in Artemisia annua L. by high performance liquid chromatography. Chinese J Pharm Anal 6:3–5Google Scholar
  101. Zheng JL, Zhao LY, Wu CW, Shen B, Zhu AY (2015) Exogenous proline reduces NaCl-induced damage by mediating ionic and osmotic adjustment and enhancing antioxidant defense in Eurya emarginata. Acta Physiol Plant 37:181–110.  https://doi.org/10.1007/s11738-015-1921-9 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Amity Institute of Microbial Technology (AIMT)Amity University CampusNoidaIndia
  2. 2.Centre for Transgenic Plant Development, Faculty of ScienceHamdard UniversityNew DelhiIndia

Personalised recommendations