Advertisement

Symbiosis

pp 1–12 | Cite as

Diversity of endosymbiotic Symbiodiniaceae in giant clams at Dongsha Atoll, northern South China Sea

  • Sherlyn Sher Qing Lim
  • Danwei Huang
  • Keryea Soong
  • Mei Lin NeoEmail author
Article

Abstract

Despite the importance of endosymbiotic dinoflagellates in the ecology of giant clams, the diversity and distribution of Symbiodiniaceae in different tridacnine species remain relatively poorly studied. Using a DNA metabarcoding approach based on the nuclear ribosomal ITS2 marker, this study examined the patterns of Symbiodiniaceae diversity and composition in two giant clam species, Tridacna maxima (n = 32) and Tridacna noae (n = 41) found at Dongsha Atoll, the largest atoll in the northern South China Sea. Both species of giant clams hosted Symbiodiniaceae from genera Symbiodinium (formerly Clade A), Cladocopium (formerly Clade C) and Durusdinium (formerly Clade D). Tridacna maxima harboured Cladocopium preferentially, followed by Symbiodinium and Durusdinium, while T. noae hosted Durusdinium most abundantly, followed by Symbiodinium and Cladocopium. Endosymbiont diversity also varied between host species—T. maxima contained 11 species while T. noae had 13 species. Among the endosymbionts, Cladocopium goreaui (ITS2 type C1) was most common in both host species. Further analyses revealed that endosymbiont species richness was influenced primarily by depth, size, and, to some extent, geographic locality of giant clams. Endosymbiont community structure was significantly different between host species and this variation was primarily driven by depth. Even though both tridacnine species share similar habitats on coral reefs, the contrasting diversity and composition of Symbiodiniaceae present in each species may underlie the host’s adaptability to micro- and macro-environmental changes. These results not only provide a baseline of the various endosymbionts occurring in giant clams on an isolated reef ecosystem, they provide useful information for predicting impacts on these host species that could arise due to climate-related environmental stressors.

Keywords

Community structure Coral reef High-throughput sequencing ITS2 Symbiodiniaceae Tridacna 

Notes

Acknowledgements

We thank members of the Reef Ecology Laboratory for their support and assistance, especially Sudhanshi Jain for help in the lab, as well as Lutfi Afiq-Rosli, Ywee Chieh Tay and Samuel Chan for advice on data analyses. Author M.L. Neo acknowledges National Research Foundation (NRF), Prime Minister’s Office, Singapore for supporting her research endeavours at the St John’s Island National Marine Laboratory. This work was supported by the L’Oréal-UNESCO For Women in Science National Fellowship (2015), a Research Award for the Dongsha Atoll Research Station (2016), a Visiting Scientist Award for the South-East Asia Network for Education and Training (2016), and NRF Singapore under its Marine Science R&D Programme (MSRDP-P03).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflicts of interest.

Research involving human participant and/or animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

References

  1. Arif C, Daniels C, Bayer T, Banguera-Hinestroza E, Barbrook A, Howe CJ, LaJeunesse TC, Voolstra CR (2014) Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region. Mol Ecol 23:4418–4433CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baillie BK, Belda-Baillie CA, Maruyama T (2000) Conspecificity and Indo-Pacific distribution of Symbiodinium genotypes (Dinophyceae) from giant clams. J Phycol 36:1153–1161CrossRefGoogle Scholar
  3. Baker AC (2001) Reef corals bleach to survive change. Nature 411:765–766CrossRefPubMedGoogle Scholar
  4. Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol S 34:661–689CrossRefGoogle Scholar
  5. Baker DM, Freeman CJ, Wong JCY, Fogel ML, Knowlton N (2018) Climate change promotes parasitism in a coral symbiosis. ISME J 12:921–930CrossRefPubMedPubMedCentralGoogle Scholar
  6. Baumann JH, Davies SW, Aichelman HE, Castillo KD (2017) Coral Symbiodinium community composition across the Belize mesoamerican barrier reef system is influenced by host species and thermal variability. Microb Ecol 75:903–915CrossRefPubMedGoogle Scholar
  7. Belda-Baillie CA, Sison M, Silvestre V, Villamor K, Monje V, Gomez ED, Baillie BK (1999) Evidence for changing symbiotic algae in juvenile tridacnids. J Exp Mar Biol Ecol 241:207–221CrossRefGoogle Scholar
  8. Boyer F, Mercier C, Bonin A, Le Bras Y, Taberlet P, Coissac E (2016) Obitools: A unix-inspired software package for DNA metabarcoding. Mol Ecol Resour 16:176–182Google Scholar
  9. Carlos AA, Baillie BK, Kawachi M, Maruyama T (1999) Phylogenetic position of Symbiodinium (Dinophyceae) isolates from tridacnids (Bivalvia), cardiids (Bivalvia), a sponge (Porifera), a soft coral (Anthozoa), and a free-living strain. J Phycol 35:1054–1062CrossRefGoogle Scholar
  10. Carlos AA, Baillie BK, Maruyama T (2000) Diversity of dinoflagellate symbionts (zooxanthellae) in a host individual. Mar Ecol Prog Ser 195:93–100CrossRefGoogle Scholar
  11. Chou Y (2016) Dongsha atoll Research Station: a steady research platform in South China Sea. Kuroshio Sci 10:23–27Google Scholar
  12. Coleman AW, Suarez A, Goff LJ (1994) Molecular delineation of species and syngens in volvocacean green algae (Chlorophyta). J Phycol 30:80–90CrossRefGoogle Scholar
  13. Comai L, Howell T (2012) Barcode Generator. http://comailab.genomecenter.ucdavis.edu/index.php/Barcode_generator. Accessed 9 Feb 2018
  14. Cooper TF, Berkelmans R, Ulstrup KE, Weeks S, Radford B, Jones AM, Doyle J, Canto M, O’Leary RA, van Oppen MJH (2011) Environmental factors controlling the distribution of Symbiodinium harboured by the coral Acropora millepora on the great barrier reef. PLoS ONE 6:e25536CrossRefPubMedPubMedCentralGoogle Scholar
  15. DeBoer TS, Baker AC, Erdmann MV, Jones PR, Barber PH (2012) Patterns of Symbiodinium distribution in three giant clam species across the biodiverse Bird’s Head region of Indonesia. Mar Ecol Prog Ser 444:117–132CrossRefGoogle Scholar
  16. DeCarlo TM, Cohen AL, Wong GT, Davis KA, Lohmann P, Soong K (2017) Mass coral mortality under local amplification of 2°C ocean warming. Sci Rep 7:44586CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dove SG, Lovell C, Fine M, Deckenback J, Hoegh-Guldberg O, Iglesias-Prieto R, Anthony KRN (2008) Host pigments: potential facilitators of photosynthesis in coral symbioses. Plant Cell Environ 31:1523–1533CrossRefPubMedGoogle Scholar
  18. Enríquez S, Méndez ER, Iglesias-Prieto R (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50:1025–1032CrossRefGoogle Scholar
  19. Fine M, Gildor H, Genin A (2013) A coral reef refuge in the Red Sea. Glob Chang Biol 19:3640–3647CrossRefPubMedGoogle Scholar
  20. Finney J, Pettay D, Sampayo E, Warner M, Oxenford H, LaJeunesse T (2010) The relative significance of host-habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus Symbiodinium. Microb Ecol 60:250–263CrossRefPubMedGoogle Scholar
  21. Holt AL, Vahidinia S, Gagnon YL, Morse DE, Sweeney AM (2014) Photosymbiotic giant clams are transformers of solar flux. J R Soc Interface 11:20140678CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC, Eakin MC, Gilmour JP, Graham NAJ, Harrison H, Hobbs J-PA, Hoey AS, Hoogenboom M, Lowe RJ, McCulloch MT, Pandolfi JM, Pratchett M, Schoepf V, Torda G, Wilson SK (2018) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:80–83CrossRefPubMedGoogle Scholar
  23. Hume BCC, D’Angelo C, Smith EG, Stevens JR, Burt J, Wiedenmann J (2015) Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world’s hottest sea, the Persian/Arabian Gulf. Sci Rep 5:8562CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hume BCC, Voolstra CR, Arif C, D'Angelo C, Burt JA, Eyal G, Loya Y, Wiedenmann J (2016) Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change. Proc Natl Acad Sci USA 113:4416–4421Google Scholar
  25. Iglesias-Prieto R, Beltrán VH, LaJeunesse TC, Reyes-Bonilla H, Thomé PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern pacific. Proc Roy Soc Biol Sci 271:1757–1763CrossRefGoogle Scholar
  26. Ikeda S, Yamashita H, Kondo S, Inoue K, Morishima S, Koike K (2017) Zooxanthellal genetic varieties in giant clams are partially determined by species-intrinsic and growth-related characteristics. PLoS ONE 12:e0172285CrossRefPubMedPubMedCentralGoogle Scholar
  27. Illumina (2011) Quality Scores for Next-Generation Sequencing. https://www.illumina.com/documents/products/technotes/technote_Q-Scores.pd. Accessed 9 Feb 2018
  28. IPCC (2014) Climate change 2014: synthesis report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, 151 ppGoogle Scholar
  29. Ishikura M, Adachi K, Maruyama T (1999) Zooxanthellae release glucose in the tissue of a giant clam, Tridacna crocea. Mar Biol 133:665–673CrossRefGoogle Scholar
  30. Ishikura M, Hagiwara K, Takishita K, Haga M, Iwai K, Maruyama T (2004) Isolation of new Symbiodinium strains from Tridacnid giant clam (Tridacna crocea) and sea slug (Pteraeolidia ianthina) using culture medium containing giant clam tissue homogenate. Mar Biotechnol 6:378–385CrossRefPubMedGoogle Scholar
  31. Jones AM, Berkelmans R, van Oppen MJH, Mieog JC, Sinclair W (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc Roy Soc Biol Sci 275:1359–1365CrossRefGoogle Scholar
  32. Keshavmurthy S, Tang K, Hsu C, Gan C, Kuo C, Soong K, Chou H, Chen CA (2017) Symbiodinium spp. associated with scleractinian corals from Dongsha Atoll (Pratas), Taiwan, in the South China Sea. PeerJ 5:e2871CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kirkendale L (2009) ‘Their day in the sun’: molecular phylogenetics and origin of photosymbiosis in the ‘other’ group of photosymbiotic marine bivalves (Cardiidae: Fraginae). Biol J Linn Soc Lond 97:448–465CrossRefGoogle Scholar
  34. Komalawati N, Nuryanto A (2005) Identification of endosymbiont zooxanthellae isolated from mantle tissue of Tridacna maxima based on 28S ribosomal DNA. Sains Akuatik 11:27–34Google Scholar
  35. LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J Phycol 37:866–880CrossRefGoogle Scholar
  36. LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400CrossRefGoogle Scholar
  37. LaJeunesse TC (2005) "Species" radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 22:570–581CrossRefPubMedGoogle Scholar
  38. LaJeunesse TC (2017) Validation and description of Symbiodinium microadriaticum, the type species of Symbiodinium (Dinophyta). J Phycol 53:1109–1114Google Scholar
  39. LaJeunesse TC, Trench RK (2000) Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol Bull 199:126–134CrossRefPubMedGoogle Scholar
  40. LaJeunesse TC, Bhagooli R, Hidaka M, deVantier L, Done T, Schmidt GW, Fitt WK, Hoegh-Guldberg O (2004) Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser 284:147–161CrossRefGoogle Scholar
  41. LaJeunesse TC, Pettay DT, Sampayo EM, Phongsuwan N, Brown B, Obura DO, Hoegh-Guldberg O, Fitt WK (2010) Long-standing environmental conditions, geographic isolation and host-symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J Biogeogr 37:785–800CrossRefGoogle Scholar
  42. LaJeunesse TC, Wham DC, Pettay DT, Parkinson JE, Keshavmurthy S, Chen CA (2014) Ecologically differentiated stress-tolerant endosymbionts in the dinoflagellate genus Symbiodinium (Dinophyceae) clade D are different species. Phycologia 53:305–319CrossRefGoogle Scholar
  43. LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong JH, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:2570–2580CrossRefPubMedGoogle Scholar
  44. Lee SY, Jeong HJ, Kang NS, Jang TY, Jang SH, LaJeunesse TC (2015) Symbiodinium tridacnidorum sp. nov., a dinoflagellate common to Indo-Pacific giant clams, and a revised morphological description of Symbiodinium microadriaticum Freudenthal, emended Trench & Blank. Eur J Phycol 50:155–172CrossRefGoogle Scholar
  45. Mies M, Sumida PYG, Rädecker N, Voolstra CR (2017) Marine invertebrate larvae associated with Symbiodinium: a mutualism from the start? Front Ecol Evol 5.  https://doi.org/10.3389/fevo.2017.00056
  46. Neo ML, Eckman W, Vicentuan K, Teo SLM, Todd PA (2015) The ecological significance of giant clams in coral reef ecosystems. Biol Conserv 181:111–123CrossRefGoogle Scholar
  47. Neo ML, Wabnitz CC, Braley RD, Heslinga GA, Fauvelot C, Van Wynsberge S, Andréfouët S, Waters C, Tan AS, Gomez ED, Costello MJ, Todd PA (2017) Giant clams (Bivalvia: Cardiidae: Tridacninae): a comprehensive update of species and their distribution, current threats and conservation status. Oceanogr Mar Biol 55:87–388Google Scholar
  48. Neo ML, Liu LL, Huang D, Soong K (2018) Thriving populations with low genetic diversity in giant clam species, Tridacna maxima and T. noae, at Dongsha Atoll, South China Sea. Reg Stud Mar Sci 24:278–287CrossRefGoogle Scholar
  49. Nguyen NH, Smith D, Peay K, Kennedy P (2015) Parsing ecological signal from noise in next generation amplicon sequencing. New Phytol 205:1389–1393CrossRefPubMedGoogle Scholar
  50. Norton JH, Shepherd MA, Long HM, Fitt WK (1992) The zooxanthellal tubular system in the giant clam. Biol Bull 183:503–506CrossRefPubMedGoogle Scholar
  51. Oksanen J, Guillaume FB, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) vegan: Community Ecology Package. R package version 2.4-6. https://CRAN.R-project.org/package=vegan. Accessed 10 April 2018
  52. Pappas MK, He S, Hardenstine RS, Kanee H, Berumen ML (2017) Genetic diversity of giant clams (Tridacna spp.) and their associated Symbiodinium in the Central Red Sea. Mar Biodivers 47:1209–1222CrossRefGoogle Scholar
  53. Pinzón JH, Devlin-Durante MK, Weber MX, Baums IB, LaJeunesse TC (2011) Microsatellite loci for Symbiodinium A3 (S. fitti) a common algal symbiont among Caribbean Acropora (stony corals) and Indo-Pacific giant clams (Tridacna). Conserv Genet Resour 3:45–47CrossRefGoogle Scholar
  54. Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–497CrossRefPubMedGoogle Scholar
  55. Pochon X, LaJeunesse T, Pawlowski J (2004) Biogeographic partitioning and host specialization among foraminiferan dinoflagellate symbionts (Symbiodinium: Dinophyta). Mar Biol 146:17–24CrossRefGoogle Scholar
  56. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 10 April 2018
  57. Reich HG, Robertson DL, Goodbody-Gringley G (2017) Do the shuffle: changes in Symbiodinium consortia throughout juvenile coral development. PLoS ONE 12:e0171768CrossRefPubMedPubMedCentralGoogle Scholar
  58. Reimer JD, Todd PA (2009) Preliminary molecular examination of zooxanthellate zoanthids (Hexacorallia: Zoantharia) and associated zooxanthellae (Symbiodinium spp.) diversity in Singapore. Raffles Bull Zool 22:103–120Google Scholar
  59. Reimer JD, Takishita K, Ono S, Maruyama T, Tsukahara J (2006) Latitudinal and intracolony ITS-rDNA sequence variation in the symbiotic dinoflagellate genus Symbiodinium (Dinophyceae) in Zoanthus sansibaricus (Anthozoa: Hexacorallia). Phycol Res 54:122–132CrossRefGoogle Scholar
  60. Rouzé H, Lecellier GJ, Saulnier D, Planes S, Gueguen Y, Wirshing HH, Berteaux-Lecellier V (2017) An updated assessment of Symbiodinium spp. that associate with common scleractinian corals from Moorea (French Polynesia) reveals high diversity among background symbionts and a novel finding of clade B. PeerJ 5:e2856CrossRefPubMedPubMedCentralGoogle Scholar
  61. Rowan R (1998) Diversity and ecology of zooxanthellae on coral reefs. J Phycol 34:407–417CrossRefGoogle Scholar
  62. Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proc Natl Acad Sci USA 92:2850–2853Google Scholar
  63. RStudio Team (2016) RStudio: integrated development for R. RStudio, Inc., Boston. http://www.rstudio.com/. Accessed 10 April 2018
  64. Sampayo E, Ridgway T, Bongaerts P, Hoegh-Guldberg O (2008) Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci USA 105:10444–10449Google Scholar
  65. Silverstein RN, Cunning R, Baker AC (2015) Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob Chang Biol 21:236–249CrossRefPubMedGoogle Scholar
  66. Stat M, Gates RD (2011) Clade D Symbiodinium in scleractinian corals: a “nugget” of hope, a selfish opportunist, an ominous sign, or all of the above? J Mar Biol 2011:730715CrossRefGoogle Scholar
  67. Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and scleractinian hosts—Symbiosis, diversity, and the effect of climate change. Perspect Plant Ecol 8:23–43CrossRefGoogle Scholar
  68. Stat M, Morris E, Gates RD (2008) Functional diversity in coral-dinoflagellate symbiosis. Proc Natl Acad Sci USA 105:9256–9261Google Scholar
  69. Sze Y, Miranda LN, Sin TM, Huang D (2018) Characterising planktonic dinoflagellate diversity in Singapore using DNA metabarcoding. Metabarcoding Metagenomics 2:e25136Google Scholar
  70. Tanzil JTI, Ng PKA, Tey YQ, Tan HYB, Yun YE, Huang D (2016) A preliminary characterisation of Symbiodinium diversity in some common corals from Singapore. COSMOS 12:15–27CrossRefGoogle Scholar
  71. Taylor DL (1969) Identity of zooxanthellae isolated from some Pacific Tridacnidae. J Phycol 5:336–340CrossRefPubMedGoogle Scholar
  72. Thornhill DJ, Lewis AM, Wham DC, LaJeunesse TC (2014) Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution 68:352–367CrossRefPubMedGoogle Scholar
  73. Tkachenko KS, Soong K (2017) Dongsha atoll: a potential thermal refuge for reef-building corals in the South China Sea. Mar Environ Res 127:112–125CrossRefPubMedGoogle Scholar
  74. Toller WW, Rowan R, Knowlton N (2001) Zooxanthellae of the Montastraea annularis species complex: patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. Biol Bull 201:348–359CrossRefPubMedGoogle Scholar
  75. Tong H, Cai L, Zhou G, Yuan T, Zhang W, Tian R, Huang H, Qian P (2017) Temperature shapes coral-algal symbiosis in the South China Sea. Sci Rep 7:40118CrossRefPubMedPubMedCentralGoogle Scholar
  76. Tonk L, Sampayo EM, Weeks S, Magno-Canto M, Hoegh-Guldberg O (2013) Host-specific interactions with environmental factors shape the distribution of Symbiodinium across the great barrier reef. PLoS ONE 8:e68533CrossRefPubMedPubMedCentralGoogle Scholar
  77. Ulstrup KE, van Oppen MJH (2003) Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef. Mol Ecol 12:3477–3484Google Scholar
  78. Venn AA, Loram JE, Douglas AE (2008) Photosynthetic symbioses in animals. J Exp Bot 59:1069–1080CrossRefPubMedGoogle Scholar
  79. Vermeij GJ (2013) The evolution of molluscan photosymbioses: a critical appraisal. Biol J Linn Soc Lond 109:497–511CrossRefGoogle Scholar
  80. Wong JC, Thompson P, Xie JY, Qiu JW, Baker DM (2016) Symbiodinium clade C generality among common scleractinian corals in subtropical Hong Kong. Reg Stud Mar Sci 8:439–444CrossRefGoogle Scholar
  81. Yang S-Y, Keshavmurthy S, Obura D, Sheppard CRC, Visram S, Chen CA (2012) Diversity and distribution of Symbiodinium associated with seven coral species in the Chagos Archipelago, Central Indian Ocean. PLoS ONE 7:e35836CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina paired-end reAd mergeR. Bioinformatics 30:614–620CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Biological SciencesNational University of SingaporeSingaporeSingapore
  2. 2.Tropical Marine Science InstituteNational University of SingaporeSingaporeSingapore
  3. 3.Department of OceanographyNational Sun Yat-Sen UniversityKaohsiungTaiwan

Personalised recommendations