Advertisement

Symbiosis

, Volume 77, Issue 2, pp 177–184 | Cite as

Changes of mycorrhizal fungal community occurring during the natural restoration after the chi-chi earthquake in Taiwan

  • Tzu-Chao Lin
  • Pi-Han Wang
  • Wan-Rou LinEmail author
Article
  • 30 Downloads

Abstract

Arbuscular mycorrhizal (AM) fungi influence the plant establishment after disturbances, however, there were no reports on the succession of soil AM fungal communities after earthquakes. This study was carried out to monitor the changes of AM fungal species composition during plant succession after earthquakes. After a major earthquake, the ‘Chi-Chi’ event of 1999, a total of 4238 AM fungal spores belonging to 13 species were recorded. Higher AM fungal spore density was found in the crest area of the affected mountainside and the AM fungal community was significantly different between the crest and valley area. Scutellospora nigra, Acaulospora scrobiculata and Acaulospora tuberculata were dominant in the early succession stage. Glomus ambisporum, Glomus deserticola and Acaulospora mellea were more abundant in the late successional stage. These results demonstrated the dynamics of AM fungal community during succession and vegetation recovery.

Keywords

Earthquakes Arbuscular mycorrhizal fungi Pioneer species Ectomycorrhizal fungi In situ field study 

Notes

Acknowledgments

Financial support was provided by the Council of Agriculture, Executive Yuan, R. O. C. (Taiwan). We thank Dr. Chi-Guang Wu for assistance with identification of AM fungal spores. For assistance with field work, we thank Mr. E. L. Cheu and Ms. C. H. Wu.

References

  1. Allen EB, Chambers JC, Connor KF, Allen MF, Brown RW (1987) Natural reestablishment of mycorrhizae in disturbed alpine ecosystems. Arct Alp Res 19:11–20. http://sci-hub.tw/10.2307/1550995 CrossRefGoogle Scholar
  2. Allen MF, Crisafulli C, Friese CF, Jeakins SL (1992) Re-formation of mycorrhizal symbioses on mount St Helens, 1980–1990: interactions of rodents and mycorrhizal fungi. Mycol Res 96:447–453. http://sci-hub.tw/10.1016/S0953-7562(09)81089-7 CrossRefGoogle Scholar
  3. Asmelash F, Bekele T, Birhane E (2016) The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Front Microbiol 7:1095. http://sci-hub.tw/10.3389/fmicb.2016.01095 CrossRefGoogle Scholar
  4. Attiwill PM (1994) The disturbance of forest ecosystems: the ecological basis for conservative management. For Ecol Manag 63:247–300. http://sci-hub.tw/10.1016/0378-1127(94)90114-7 CrossRefGoogle Scholar
  5. Bellgard SE, Whelan RJ, Muston RM (1994) The impact of wildfire on vesicular-arbuscular mycorrhizal fungi and their potential to influence the re-establishment of post-fire plant communities. Mycorrhiza 4:139–146. http://sci-hub.tw/10.1007/BF00203532 CrossRefGoogle Scholar
  6. Chagnon PL, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18:484–491CrossRefGoogle Scholar
  7. Chen T-S (2005) Change detection for vegetation from landslides of the 921 earthquake at Mt. Jiujiufong with the NDVI analysis Journal of Endemic Species Research 7:63–75 (in Chinese)Google Scholar
  8. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd ed. Plymouth, U.K.: PRIMER-E LtdGoogle Scholar
  9. Dickie IA, Martínez-García LB, Koele N, Grelet GA, Tylianakis JM, Peltzer DA, Richardson SJ (2013) Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. Plant Soil 367:11–39. http://sci-hub.tw/10.1007/s11104-013-1609-0 CrossRefGoogle Scholar
  10. García de León D, Moora M, Öpik M, Neuenkamp L, Gerz M, Jairus T, Vasar M, Bueno CG, Davison J, Zobel M (2016) Symbiont dynamics during ecosystem succession: co-occurring plant and arbuscular mycorrhizal fungal communities. FEMS Microbiol Ecol 92:fiw097. http://sci-hub.tw/10.1093/femsec/fiw097 CrossRefGoogle Scholar
  11. Gehring CA, Mueller RC, Whitham TG (2006) Environmental and genetic effects on the formation of ectomycorrhizal and arbuscular mycorrhizal associations in cottonwoods. Oecologia 149:158–164. http://sci-hub.tw/10.1007/s00442-006-0437-9 CrossRefGoogle Scholar
  12. Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244. http://sci-hub.tw/10.1016/S0007-1536(63)80079-0 CrossRefGoogle Scholar
  13. Goomaral A, Undarmaa J, Matsumoto T, Yamato M (2013) Effect of plant species on communities of arbuscular mycorrhizal fungi in the Mongolian steppe. Mycoscience 54:362–367. http://sci-hub.tw/10.1016/j.myc.2012.12.005 CrossRefGoogle Scholar
  14. Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328:420–422. http://sci-hub.tw/10.1038/328420a0 CrossRefGoogle Scholar
  15. Helm DJ, Allen EB, Trappe JM (1996) Mycorrhizal chronosequence near Exit Glacier, Alaska. Can J Bot 74:1496–1506CrossRefGoogle Scholar
  16. Huang (2002) Monitoring and assessing the changes of vegetation cover at Jiujiufong nature reserve. Q J For Res 24:35–48Google Scholar
  17. INVAM (2003) International culture collection of vesicular and arbuscular mycorrhizal fungi. Species description. Morgantown, West Virginia Agriculture and Forestry Experimental Station. Home page. http://invam.caf.wvu.edu. Accessed 31 Dec 2003
  18. Jenkins WR (1964) A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis Rep 692Google Scholar
  19. Karandashov V, Nagy R, Wegmüller S, Amrhein N, Bucher M (2004) Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 101:6285–6290. http://sci-hub.tw/10.1073/pnas.0306074101 CrossRefGoogle Scholar
  20. Kauppinen M, Raveala K, Wäli PR, Ruotsalainen AL (2014) Contrasting preferences of arbuscular mycorrhizal and dark septate fungi colonizing boreal and subarctic Avenella flexuosa. Mycorrhiza 24:171–177. http://sci-hub.tw/10.1007/s00572-013-0526-7 CrossRefGoogle Scholar
  21. Kikvidze Z, Armas C, Fukuda K, Martínez-García LB, Miyata M, Oda-Tanaka A, Pugnaire FI, Wu B (2010) The role of arbuscular mycorrhizae in primary succession: differences and similarities across habitats. Web Ecol 10:50–57. http://sci-hub.tw/10.5194/we-10-50-2010 CrossRefGoogle Scholar
  22. Klironomos JN, McCune J, Hart M, Neville J (2000) The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol Lett 3:137–141. http://sci-hub.tw/10.1046/j.1461-0248.2000.00131.x CrossRefGoogle Scholar
  23. Koide RT, Mosse B (2004) A history of research on arbuscular mycorrhiza. Mycorrhiza 14:145–163. http://sci-hub.tw/10.1007/s00572-004-0307-4 CrossRefGoogle Scholar
  24. Koziol L, Bever JD (2016) The missing link in grassland restoration: arbuscular mycorrhizal fungi inoculation increases plant diversity and accelerates succession. J Appl Ecol n/a-n/a 54:1301–1309. http://sci-hub.tw/10.1111/1365-2664.12843 CrossRefGoogle Scholar
  25. Krüger C, Kohout P, Janoušková M, Püschel D, Frouz J, Rydlová J (2017) Plant communities rather than soil properties structure arbuscular mycorrhizal fungal communities along primary succession on a mine spoil. Front Microbiol 8. http://sci-hub.tw/10.3389/fmicb.2017.00719
  26. Lin TC, Wu CG (2007) Vesicular-arbuscular mycorrhizal fungi (VAMF) symbiotic with pioneer plants at Mt. Jiujiufong after the 921 earthquakes. Journal of Endemic Species Research 9:51–62 (in Chinese)Google Scholar
  27. Lin W-T, Chou W-C, Lin C-Y, Huang P-H, Tsai J-S (2005) Vegetation recovery monitoring and assessment at landslides caused by earthquake in Central Taiwan. For Ecol Manag 210:55–66. http://sci-hub.tw/10.1016/j.foreco.2005.02.026 CrossRefGoogle Scholar
  28. Lin G, McCormack ML, Guo D (2015) Arbuscular mycorrhizal fungal effects on plant competition and community structure. J Ecol 103:1224–1232. http://sci-hub.tw/10.1111/1365-2745.12429 CrossRefGoogle Scholar
  29. Lovelock CE, Andersen K, Morton JB (2003) Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia 135:268–279. http://sci-hub.tw/10.1007/s00442-002-1166-3 CrossRefGoogle Scholar
  30. Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12:563–569. http://sci-hub.tw/10.1111/j.1438-8677.2009.00308.x Google Scholar
  31. Morton JB (1988) Taxonomy of VA mycorrhizal fungi: classification, nomenclature and identification. Mycotaxon 32:267–324Google Scholar
  32. Neuenkamp L, Prober SM, Price JN, Zobel M, Standish RJ (2018) Benefits of mycorrhizal inoculation to ecological restoration depend on plant functional type, restoration context and time. Fungal Ecology (Accepted/In press):1–10. http://sci-hub.tw/10.1016/j.funeco.2018.05.004
  33. Oba H, Shinozaki N, Oyaizu H, Tawaraya K, Wagatsuma T, Barraquio WL, Saito M (2004) Arbuscular mycorrhizal fungal communities associated with some pioneer plants in the lahar area of Mt. Pinatubo, Philippines. Soil Sci Plant Nutr 50:1195–1203. http://sci-hub.tw/10.1080/00380768.2004.10408594 CrossRefGoogle Scholar
  34. Oehl F, Alves a Silva G, Goto BT, Costa Maia L, Sieverding E (2011a) Glomeromycota: two new classes and a new order. Mycotaxon 116:365–379. http://sci-hub.tw/10.5248/116.365 CrossRefGoogle Scholar
  35. Oehl F, Sieverding E, Palenzuela J, Ineichen K (2011b) Advances in Glomeromycota taxonomy and classification. IMA Fungus Glob Mycol J 2:191–199. http://sci-hub.tw/10.5598/imafungus.2011.02.02.10 CrossRefGoogle Scholar
  36. Plett JM, Martin F (2011) Blurred boundaries: lifestyle lessons from ectomycorrhizal fungal genomes. Trends Genet 27:14–22. http://sci-hub.tw/10.1016/j.tig.2010.10.005 CrossRefGoogle Scholar
  37. Read DJ (1993) Mycorrhiza in plant communities. Adv Plant Pathol 9:1–31Google Scholar
  38. Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333CrossRefGoogle Scholar
  39. Rillig MC, Mardatin NF, Leifheit EF, Antunes PM (2010) Mycelium of arbuscular mycorrhizal fungi increases soil water repellency and is sufficient to maintain water-stable soil aggregates. Soil Biol Biochem 42:1189–1191. http://sci-hub.tw/10.1016/j.soilbio.2010.03.027 CrossRefGoogle Scholar
  40. Schenck NC, Pérez Y (1990) Manual for the identification of VA mycorrhizal fungi. Synergistic Publications, Gainesville, FLGoogle Scholar
  41. Schüßler A, Walker C (2010) The Glomeromycota. A species list with new families and new genera. In: CreateSpace independent publishing platform. Gloucester, EnglandGoogle Scholar
  42. Sikes BA, Maherali H, Klironomos JN (2012) Arbuscular mycorrhizal fungal communities change among three stages of primary sand dune succession but do not alter plant growth. Oikos 121:1791–1800. http://sci-hub.tw/10.1111/j.1600-0706.2012.20160.x CrossRefGoogle Scholar
  43. Smith SE, Read DJ (2010) Mycorrhizal Symbiosis. Academic PressGoogle Scholar
  44. Toju H, Yamamoto S, Sato H, Tanabe AS (2013) Sharing of diverse mycorrhizal and root-endophytic fungi among plant species in an oak-dominated cool–temperate forest. PLoS One 8:e78248. http://sci-hub.tw/10.1371/journal.pone.0078248 CrossRefGoogle Scholar
  45. Turrini A, Sbrana C, Avio L, Njeru EM, Bocci G, Bàrberi P, Giovannetti M (2016) Changes in the composition of native root arbuscular mycorrhizal fungal communities during a short-term cover crop-maize succession. Biol Fertil Soils 52:643–653. http://sci-hub.tw/10.1007/s00374-016-1106-8 CrossRefGoogle Scholar
  46. Vogelsang KM, Reynolds HL, Bever JD (2006) Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol 172:554–562. http://sci-hub.tw/10.1111/j.1469-8137.2006.01854.x CrossRefGoogle Scholar
  47. Wang Y, Huang J, Gao Y (2012) Arbuscular mycorrhizal colonization alters subcellular distribution and chemical forms of cadmium in Medicago sativa L. and resists cadmium toxicity. PLoS One 7:e48669. http://sci-hub.tw/10.1371/journal.pone.0048669 CrossRefGoogle Scholar
  48. Warner NJ, Allen MF, MacMahon JA (1987) Dispersal agents of vesicular-arbuscular mycorrhizal fungi in a disturbed arid ecosystem. Mycologia 79:721–730. http://sci-hub.tw/10.2307/3807824 CrossRefGoogle Scholar
  49. Wu B, Hogetsu T, Isobe K, Ishii R (2007) Community structure of arbuscular mycorrhizal fungi in a primary successional volcanic desert on the southeast slope of Mount Fuji. Mycorrhiza 17:495–506. http://sci-hub.tw/10.1007/s00572-007-0114-9 CrossRefGoogle Scholar
  50. Yang G, Liu N, Lu W, Wang S, Kan H, Zhang Y, Xu L, Chen Y (2014) The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability. J Ecol 102:1072–1082. http://sci-hub.tw/10.1111/1365-2745.12249 CrossRefGoogle Scholar
  51. Zangaro W, Rostirola LV, de Souza PB, de Almeida Alves R, Lescano LEAM, Rondina ABL, Nogueira MA, Carrenho R (2013) Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil. Mycorrhiza 23:221–233. http://sci-hub.tw/10.1007/s00572-012-0464-9 CrossRefGoogle Scholar
  52. Zhang H, Liu Z, Chen H, Tang M (2016) Symbiosis of arbuscular mycorrhizal fungi and Robinia pseudoacacia L. improves root tensile strength and soil aggregate stability. PLoS One 11:e0153378. http://sci-hub.tw/10.1371/journal.pone.0153378 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Endemic Species Research InstituteNantouTaiwan, Republic of China
  2. 2.Department of Life ScienceTunghai UniversityTaichungTaiwan, Republic of China
  3. 3.Bioresource Collection and Research Center (BCRC)Food Industrial Research and Development InstituteHsinchuTaiwan, Republic of China

Personalised recommendations