Advertisement

Symbiosis

, Volume 77, Issue 1, pp 1–8 | Cite as

Building plant microbiome vault: a future biotechnological resource

  • Murali Gopal
  • Alka Gupta
Article
  • 202 Downloads

Abstract

The plant-microbiome symbiotic association will need to be taken advantage of for feeding the burgeoning millions in the face of climatic perturbations and environmental deterioration. Since the plants select their microbiome from the soils on which they grow, soils, therefore, remain the key source of microbiome for sustainable food production. Building a reliable and reproducible plant microbiome vault of key crops growing with desirable traits such as high yielders under low input conditions, drought tolerant plots, disease suppressive soils, etc. can become an important and irreparable biotechnological resource for future agriculture. Based on the available literature, a complementary approach is discussed wherein i) rhizosphere and bulk soils are preserved with the best available protocols in such a way that their biological components remain undisturbed for long periods and the viable microbiome can be accessed; supplemented side-by-side with ii) systematic isolation, screening and preservation of the ‘Minimal Effective Microbiome Set’ (‘MEMS’) for building the plant microbiome vault.

Keywords

Plant microbiome vault Rhizosphere soil  Minimal effective microbiome set Live soil preservation 

Notes

Acknowledgments

The authors gratefully acknowledge the critical suggestions made by the anonymous reviewers for improving the contents.

References

  1. Agler TA, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D et al (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14(1):e1002352.  https://doi.org/10.1371/journal.pbio.1002352 CrossRefGoogle Scholar
  2. Aleklett K, Kiers ET, Ohlsson P, Shimizu TS, Caldas VEA, Hammer EC (2018) Build your own soil: exploring microfluidics to create microbial habitat structure. ISME J 12:312–319CrossRefGoogle Scholar
  3. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32(6):666–681CrossRefGoogle Scholar
  4. Badri DV, Zolla G, Bakker MG, Manter DK, Vivanco JM (2013) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol 198:264–273CrossRefGoogle Scholar
  5. Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann et al (2015) Functional overlap of Arabidopsis leaf and root microbiota. Nature 528:364–372CrossRefGoogle Scholar
  6. Berendsen RL, Vismans C, Yu K, Song Y, de Jonge R, Burgman WP, Buromolle M, Herschend J, Bakker PAHM, Pieterse CM (2018) Disease-induced assemblage of plant-beneficial bacterial consortium. ISME J 12:1496–1507.  https://doi.org/10.1038/341396-068-0093-1 CrossRefGoogle Scholar
  7. Berg G, Rybakova D, Grube M, Koberl M (2016) The plant microbiome explored:implications for experimental botany. J Exp Biol 67:995–1002Google Scholar
  8. Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 8:e56329CrossRefGoogle Scholar
  9. Bomar L, Maltz M, Colston S, Graf J (2011) Directed culturing of microorganisms using metatranscriptomics. MBio 2:e00012–e00011CrossRefGoogle Scholar
  10. Bulgarelli D, Schlaeppi K, Spaepen S, Ver L, van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838CrossRefGoogle Scholar
  11. Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A et al (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15(3):e2001793.  https://doi.org/10.1371/journal.pbio.2001793 CrossRefGoogle Scholar
  12. Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263CrossRefGoogle Scholar
  13. Chen L, Brookes PC, Xu J, Zhang J, Zhang C, Zhou X, Luo Y (2016) Structural and functional differentiation of the root-associated bacterial microbiome of perennial grass. Soil Biol Biochem 98:1–10CrossRefGoogle Scholar
  14. Chen H-M, Wu H, Yan B, Zhao H, Liu F, Zhang H, Sheng Q, Miao F, Liang Z (2018) Core microbiome of medicinal plant Salvia miltiorrhiza seed: a rich reservoir of beneficial microbes for secondary metabolism? Int J Mol Sci 19:672.  https://doi.org/10.3390/ijms19030672 CrossRefGoogle Scholar
  15. Clark IM, Hirsch PR (2008) Survival of bacterial DNA and culturable bacteria in archived soils from the Rothamsted experiment. Soil Biol Biochem 40:1090–1102CrossRefGoogle Scholar
  16. Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, North G, Visel A, Partida-Martinez LP, Tringe SG (2016) Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol 209:798–811CrossRefGoogle Scholar
  17. de Souza RSC, Okura VK, Armanhi JSL, Jorrín B, Lozano N, da Silva MJ, González-Guerrero M, de Araújo LM, Verza NC, Bagheri HC, Imperial J, Arruda P (2016) Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep 6:28774.  https://doi.org/10.1038/srep28774 CrossRefGoogle Scholar
  18. Declerck S, Willems A, van der Heijden MGA, Varese GC, Tukovskaya O, Evtushenkho L, Ivshina I, Desmeth P (2015) PERN: an EU-Russia initiative for rhizosphere microbial resources. Trends Biotechnol 33:377–380CrossRefGoogle Scholar
  19. Donachie SP, Foster JS, Brown MV (2007) Culture clash: challenging the dogma of microbial diversity. ISME 1:97–102CrossRefGoogle Scholar
  20. Edwards J, Johnson C, Santos-Medellin C, Lurie E, Podishetty NK, Bhatnagar S et al (2015) Structure, variations, and assemble of root-associated micrbiomes of rice. PNAS 112:E911–EE20CrossRefGoogle Scholar
  21. Finkel OM, Castrillo G, Parades SH, Gonzalez IS, Dangl JL (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163CrossRefGoogle Scholar
  22. Goh C-H, Veliz Vallejos DF, Nicotra AB, Mathesius U (2013) The impact of beneficial plant-associated microbes on plant phenotypic plasticity. J Chem Ecol 39:826–839CrossRefGoogle Scholar
  23. Goldford JE, Lu N, Bajic D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, Segre D, Mehta P, Sancez A (2018) Emergent simplicity in microbiome community assembly. Science 361:469–474CrossRefGoogle Scholar
  24. Gopal M, Gupta A (2016) Microbiome selection could spur next-generation plant breeding strategies. Front Microbiol.  https://doi.org/10.3389/fmicb.2016.01971
  25. Gopal M, Gupta A, Thomas GV (2013) Bespoke microbiome therapy to manage plant diseases. Front Microbiol 4.  https://doi.org/10.3389/fmicb.2013.00355
  26. Hacquard S (2016) Disentangling the factors shaping microbiota composition across the plant holobiont. New Phytol 209:454–457CrossRefGoogle Scholar
  27. Hacquard S, Garrido-Oter R, Gonzalez A, Spaepen S, Ackermann G, Lebeis S, McHardy AC, Dangl JL, Kinght R, Ley R et al (2015) Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17:603–616CrossRefGoogle Scholar
  28. Hamilton CE, Bever JD, Labbe J, Yang X, Yin H (2016) Mitigating climate change through managing constructed-microbial communities in agriculture. Agric Ecosyst Environ 216:304–308CrossRefGoogle Scholar
  29. Heckly RJ (1978) Preservation of microorganisms. Ad Appl Microbiol 24:1–54Google Scholar
  30. Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25CrossRefGoogle Scholar
  31. Howard MM, Bell TH, Kao-Kniffin J (2017) Soil microbiome transfer method affects microbiome composition, including dominant microorganisms, in a new environment. FEMS Microbiol Lett 364.  https://doi.org/10.1093/femsle/fnx092
  32. Huang X-F, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275CrossRefGoogle Scholar
  33. Hunziker L, Bonisch D, Groenhagen U, Bailly A, Schulz S, Weisskopf L (2015) Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans. Appl Environ Microbiol 81:821–830CrossRefGoogle Scholar
  34. Inostroza NG, Barra PJ, Wick LY, Mora ML, Jorquera MA (2016) Effect of rhizobacterial consortia from undisturbed arid- and agro-ecosystems on whet growth under different conditions. Lett Appl Microbiol 64:158–163CrossRefGoogle Scholar
  35. Lau JA, Lennon JT (2011) Evolutionary ecology of plant-microbe interactions: soil microbial structure alters selection on plant traits. New Phytol 192:215–224CrossRefGoogle Scholar
  36. Lebeis SL, Paredes SH, Lundberg DS, Breakfiled N, Gehring J, McDonald M, Malfatti S, del Rio TG, Jones CD, Tringe SG, Dangl JL (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864CrossRefGoogle Scholar
  37. Lemanceau P, Blouin M, Muller D, Moenne-Loccoz Y (2017) Let the core microbiota be functional. Trends Plant Sci 22:583–595.  https://doi.org/10.1016/j.tplants.2017.04.008 CrossRefGoogle Scholar
  38. Li F, Zhang X, Gong J, Liu L, Yi Y (2018) Specialized core bacteria associate with plants adapted to adverse environment with high calcium contents. PLoS One 13(3):e0194080.  https://doi.org/10.1371/journal.pone.0194080 CrossRefGoogle Scholar
  39. Lundberg DS, Lebeis SL, Paredes SH, et al. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90Google Scholar
  40. Manter DK, Delgado JA, Blackburn HD, Harmel D, Perez de Leon AA (2017) Why we need a national living soil repository. PNAS 114:13587–13590CrossRefGoogle Scholar
  41. Marasco R, Rolli E, Ettoumi B et al (2012) A drought resistance promoting microbiome is selected by root system under desert farming. PLoS One 7:48479CrossRefGoogle Scholar
  42. Meadows-Smith M, Wigley PP, Turner S (2017) Integrated plant breeding methods for complementary pairings of plant and microbial consortia. US Patent Application 20170086402Google Scholar
  43. Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100CrossRefGoogle Scholar
  44. Morono Y, Terada T, Yamamoto Y, Xiao N, Hirose T, Sugeno M, Ohwada N, Inagaki F (2015) Intact preservation of environmental samples by freezing under an alternating magnetic field. Environ Microbiol Rep 7:243–251.  https://doi.org/10.1111/1758-2229.12238 CrossRefGoogle Scholar
  45. Mueller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23:606–617CrossRefGoogle Scholar
  46. Niu B, Paulson JN, Zheng X, Kolter R (2017) Simplified and representative bacterial community of maize roots. PNAS 114:E2450–E2459.  https://doi.org/10.1073/pnas.1616148114 CrossRefGoogle Scholar
  47. Nogales A, Nobre T, Valadas V, Ragonezi C, Goring M et al (2015) Can functional hologenomics aid tackling challenges in plant breeding? Brief Funct Genomics 15:288–297.  https://doi.org/10.1093/bfgp/elv030 CrossRefGoogle Scholar
  48. Panke-Buisse K, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J (2014) Selection on soil microbiomes reveals reproducible trait impacts on plant functions. ISME J 9:980–989.  https://doi.org/10.1038/ismej.2014.196 CrossRefGoogle Scholar
  49. Partida-Martinez LP, Heli M (2011) The microbe-free plant: fact or artifact. Front Plant Sci 2:100CrossRefGoogle Scholar
  50. Peiffer S, Mitter B, Oswald A, Schloter-Hai B, Schloter M, Declerck S, Sessitsch A (2017) Rhizosphere microbiomes of potato cultivated in high Andes show stable and dynamic core microbiomes with difference responses to plant development. FEMS Microb Ecol 93.  https://doi.org/10.1093/femsec/fiw242
  51. Pendergast TH IV, Burke DJ, Carson WP (2013) Belowground biotic complexity drives aboveground dynamics: a test of the soil community feedback model. New Phytol 197:1300–1393CrossRefGoogle Scholar
  52. Pham VHT, Kim J (2012) Cultivation of unculturable soil bacteria. Trends Biotechnol 30:475–484CrossRefGoogle Scholar
  53. Pham VHT, Kim J (2016) Improvement for isolation of soil bacteria by using common culture media. J Pure Appl Microbiol 10:49–59Google Scholar
  54. Pieterse CMJ, de Jonge R, Berendsen RL (2016) Soil-borne supremacy. Trends Plant Sci 21:171–173CrossRefGoogle Scholar
  55. Poudel R, Jumpponen A, Schlatter DC, Paulitz TC, Gardener BB, Kinkel LL, Garrett KA (2016) Microbiome networks: a systems framework for identifying candidate microbial assemblages for disease management. Phytopathology 106:1083–1096CrossRefGoogle Scholar
  56. Prakash O, Shouche YS, Jangid K (2013) Microbial cultivation and the role of microbial resource centers in the omics era. Appl Microbiol Biotechnol 53:247–252Google Scholar
  57. Raaijmakers JM, Mazzola M (2016) Soil immune responses. Science 352:1392–1393CrossRefGoogle Scholar
  58. Ringeisen BR, Wu PK. 2017. Isolation of microniches from solid-phase and solid suspension in liquid phase microbiomes using laser-induced forward transfer. US Patent Application 2017/0002344 A1Google Scholar
  59. Rodriguez-Echeverria S, Armas C, Piston N, Hortal S, Pugnaire F (2013) A role of below-ground biota on plant-plant facilitation. J Ecol 101:1420–1428CrossRefGoogle Scholar
  60. Rodriguez-Echeverria S, Lozano YM, Bardgett RD (2016) Influence of soil microbiota in nurse plant systems. Funct Ecol 30:30–40CrossRefGoogle Scholar
  61. Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML et al (2014) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait: root bacteria protect plants from drought. Environ Microbiol.  https://doi.org/10.1111/1462-2920.12439
  62. Rosenberg E, Zilber-Rosenberg I. 2016. Microbes drive evolution of animals and plants; the hologenome concept. MBio 7(2). pii: e01395-e01315Google Scholar
  63. Sanchez-Canizares C, Jorrin B, Poole PS, Tcakz A (2017) Understanding the holobiont: the interdependence of plants and their microbiome. Curr Opin Microbiol 38:188–196.  https://doi.org/10.1016/j.mib.2017.07.001 CrossRefGoogle Scholar
  64. Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT (2015) Native root-associated bacteria rescue a plant form a sudden-wilt disease that emerged during continuous cropping. PNAS 112:E5013–E5020.  https://doi.org/10.1073/pnas.1505765112 CrossRefGoogle Scholar
  65. Schlaeppi K, Bulgarelli D (2015) The plant microbiome at work. Mol Plant-Microbe Interact 28:212–217CrossRefGoogle Scholar
  66. Schlaeppi K, Dombrowski N, van Themaat EVL, Schulze-Lefert P (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. PNAS 111:585–592CrossRefGoogle Scholar
  67. Sharma KS, Gupta AK, Shukla AW, Ahmed E, Sharma MP, Ramesh A (2016) Microbial conservation strategies and methodologies: status and challenges. Indian J Plant Genet Resour 29:340–342CrossRefGoogle Scholar
  68. Simillie CS, Sauk J, Gevers D, Friedman J, Sung J, Youngster I, Hohmann EL, Staley C et al (2018) Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation. Cell Host Microbe 23:229–240.e5CrossRefGoogle Scholar
  69. Sugio A, Dubreuil G, Giron D, Simon JC (2015) Plant-insect interactions under bacterial influence: ecological implifications and underlying mechanisms. J Exp Bot 66:467–478CrossRefGoogle Scholar
  70. Swenson W, Wilson DS, Elias R (2000) Artificial ecosystem selection. PNAS 97:9110–9114CrossRefGoogle Scholar
  71. Thompson LR, Sanders JG, McDonald D, Amir A, The Earth Microbiome Project Consortium et al (2017) A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551:457–463CrossRefGoogle Scholar
  72. Tkacz A, Poole P (2015) Role of root microbiota in plant productivity. J Exp Bot 66:2167–2175CrossRefGoogle Scholar
  73. Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M, Nakaoka S, Onoda Y, Yoshida K, Schlaeppi K, Bai Y, Sugiura R, Ichihashi Y, Minamisawa K, Kiers ET (2018) Core microbiomes for sustainable agroecosystems. Nature Plants 4:247–257Google Scholar
  74. Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:209CrossRefGoogle Scholar
  75. van der Heijden MGA, Hartmann M (2016) Networking in the plant microbiome. PLoS Biol.  https://doi.org/10.1371/journal.pbio.10023878.t001
  76. Van Deynze A, Zamora P, Delaux P-M, Heitmann C, Jayaraman D, Rajasekar S, Graham D, Maeda J, Gibson D et al (2018) Nitrogen fixation in a landrace of maize issupported by a mucilage-associated diazotrophic microbiota. PLoS Biol 16(8):e2006352.  https://doi.org/10.1371/journal.pbio.2006352 CrossRefGoogle Scholar
  77. Vandenkoornhuyse P, Qaiser A, Duhamel M (2015) Le Van amandine, Dufrense a. 2015. The importance of the microbiome of the plant holobiont (Tansley rev.). New Phytol.  https://doi.org/10.1111/nph.13312
  78. VanInsberghe D, Hartmann M, Stewart GR, Mohn WW (2013) Isolation of substantial proportion of forest soil bacterial communities detected via pyrotag sequencing. Appl Environ Microbiol 79:2096–2098CrossRefGoogle Scholar
  79. Vorholt JA, Vogel C, Carlstrom CI, Muller DB (2017) Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22:142–155CrossRefGoogle Scholar
  80. Wagner MR, Lundberg DS, Coleman-Derr D, Tringe SG, Dangl JL, Mitchell-Olds T (2014) Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol Lett 17:717–726CrossRefGoogle Scholar
  81. Wei Z, Jousset A (2017) Plant breeding goes microbial. Trends Pl Sci 22:555–558.Google Scholar
  82. White JF, Chen Q, Torres MS, Mattera R, Irizarry I, Tadych M, Bergen M (2015) Collaboration between grass seedlings and rhizobacteria to scavenge organic nitrogen in soils. AoB PLANTS 7:plu093.  https://doi.org/10.1093/aobpla/plu093 CrossRefGoogle Scholar
  83. Winters RD, Winn JWC (2010) A simple, effective method of bacterial culture storage: a brief technical note. J Bacteriol Virol 40:99–101CrossRefGoogle Scholar
  84. Xue C, Ryan Penton C, Shen Z, Zhang R, Huang Q, Li R, Ruan Y, Shen Q (2015) Manipulating the banana rhizosphere microbiome for biological control of Panama disease. Sci Rep 5:11124CrossRefGoogle Scholar
  85. Yeoh YK, Paungfoo-Lonhienne C, Dennis PG, Robinson N, Ragan MA, Schmidt S, Hugenholtz P (2015) The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application. Environ Microbiol 18:1338–1351.  https://doi.org/10.1111/1462-2920.12925 CrossRefGoogle Scholar
  86. Yuan Z, Druzhinina IS, Labbe J, Redman R, Qin Y, Rodriguez R, Zhang C, Tuskan GA, Lin F (2016) Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Sci Rep 6(32467):2016.  https://doi.org/10.1038/srep32467 Google Scholar
  87. Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, Bokulich NA, Mills DA, Martin G et al (2015) The soil microbiome influences grapevine –associated microbiota. MBio 6:e02527–e02514CrossRefGoogle Scholar
  88. Zelezniak A, Andrejev S, Ponomarova O, Mende R, Bork P, Patil KR (2015) Metabolic dependencies drive species co-occurrence in diverse microbial communities. PNAS 112:6449–6454CrossRefGoogle Scholar
  89. Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735CrossRefGoogle Scholar
  90. Zolla G, Badri DV, Bakker MG, Manter D, Vivanco JM (2013) Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Appl Soil Ecol 68:1–9CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Microbiology SectionICAR-Central Plantation Crops Research InstituteKasaragodIndia

Personalised recommendations