Advertisement

Symbiosis

, Volume 77, Issue 1, pp 49–58 | Cite as

Expression of Heterorhabditis bacteriophora C-type lectins, Hb-clec-1 and Hb-clec-78, in context of symbiosis with Photorhabdus bacteria

  • Chaitra G. Bhat
  • Khushbu Chauhan
  • Victor Phani
  • Pradeep K. Papolu
  • Uma RaoEmail author
  • Vishal Singh SomvanshiEmail author
Article
  • 34 Downloads

Abstract

Insect-parasitic nematodes of the genus Heterorhabditis live in a symbiotic relationship with a gram negative Gamma-proteobacteria of the genus Photorhabdus. This nematode-bacteria pair is a simple and genetically tractable model to study animal-microbe symbiosis. Here we investigated the role of Heterorhabditis nematode C-type lectin (clec) genes in context of nematode-bacteria symbiosis. The in silico analysis identified seven clec genes in H. bacteriophora and three clec genes in H. indica. Two of the clec genes, H. bacteriophora clec-1 (Hb-clec-1) and H. bacteriophora clec-78 (Hb-clec-78) were further characterized. Both of these genes were present in a single copy in the H. bacteriophora genome. The phylogenetic analysis revealed that H. bacteriophora CLEC proteins were close to CLEC-1 and CLEC-78 proteins of free living Caenorhabditis but not to the CLEC proteins of insect-parasitic Steinernema nematodes which share a similar symbiotic relationship with Xenorhabdus bacteria. In situ hybridization showed that expression of Hb-clec-1 and Hb-clec-78 was localized to the alimentary canal of infective juveniles (IJs) in the region of terminal bulb, oesophago-intestinal valve and anterior part of intestine. Hb-clec-78 gene expression displayed significant positive correlation to the presence of bacteria during various stages of symbiosis: it was up-regulated during all the nematode developmental stages when Photorhabdus was symbiotically associated, but down-regulated at the post-IJ recovery stage when the developing nematodes were free of bacteria. Hb-clec-1 gene expression did not show any correlation with presence or absence of symbiont bacteria. Subject to genetic validation, our study suggests that Hb-clec-78 might be actively involved in modulation of symbiosis with Photorhabdus symbionts.

Keywords

C-type lectins clec-1 clec-78 Heterorhabditis Photorhabdus Symbiosis 

Notes

Acknowledgements

M.Sc. student CGB acknowledges the Junior Research Fellowship from the Indian Council of Agricultural Research, and PG School, ICAR-Indian Agricultural Research Institute, New Delhi. This work was supported by funding from Science and Engineering Research Board, Department of Science and Technology, Government of India [Grant no. SB/SO/AS/010/2014 to VSS], and in-house funding from the Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi.

Supplementary material

13199_2018_569_MOESM1_ESM.docx (17 kb)
ESM 1 (DOCX 17 kb)

References

  1. Bai X, Adams BJ, Ciche TA, Clifton S, Gaugler R, Kim KS, Spieth J, Sternberg PW, Wilson RK, Grewal PS (2013) A lover and a fighter: the genome sequence of an entomopathogenic nematode Heterorhabditis bacteriophora. PLoS One 8:69618.  https://doi.org/10.1371/journal.pone.0069618 CrossRefGoogle Scholar
  2. Bulgheresi S, Schabussova I, Chen T, Mullin NP, Maizels RM, Ott JA (2006) A new C-type lectin similar to the human immunoreceptor DC-SIGN mediates symbiont acquisition by a marine nematode. Appl Environ Microbiol 72:2950–2956.  https://doi.org/10.1128/AEM.72.4.2950-2956.2006 CrossRefGoogle Scholar
  3. Chu DS, Liu H, Nix P, Wu TF, Ralston EJ, Yates JR, Meyer BJ (2006) Sperm chromatin proteomics identifies evolutionarily conserved fertility factors. Nature 443:101–105.  https://doi.org/10.1038/nature05050 CrossRefGoogle Scholar
  4. Ciche T (2007) The biology and genome of Heterorhabditis bacteriophora. WormBook : the online review of C. elegans biology 1–9Google Scholar
  5. Ciche TA, Kim KS, Kaufmann-Daszczuk B, Nguyen KC, Hall DH (2008) Cell invasion and matricide during Photorhabdus luminescens transmission by Heterorhabditis bacteriophora nematodes. Appl Environ Microbiol 74:2275–2287.  https://doi.org/10.1128/AEM.02646-07 CrossRefGoogle Scholar
  6. Clarke DJ (2014) The genetic basis of the symbiosis between Photorhabdus and its invertebrate hosts. Adv Appl Microbiol 88:1–29.  https://doi.org/10.1016/B978-0-12-800260-5.00001-2 CrossRefGoogle Scholar
  7. Cummings RD, McEver RP (2009) C-type lectins. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, New York, pp 439–457Google Scholar
  8. De Ley P, Blaxter M (2002) Systematic position and phylogeny. In: Lee DL (ed) The biology of nematodes. CRC Press, Boca Raton, pp 1–30CrossRefGoogle Scholar
  9. Gaugler R (2002) Entomopathogenic nematology. CABI, UKCrossRefGoogle Scholar
  10. Gebremikael MT, Steel H, Buchan D, Bert W, De Neve S (2016) Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions. Sci Rep 6:32862.  https://doi.org/10.1038/srep32862 CrossRefGoogle Scholar
  11. Goldstein IJ, Hayes CE (1978) The lectins: carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem 35:127–340.  https://doi.org/10.1038/srep32862 CrossRefGoogle Scholar
  12. Hynes RO, Zhao Q (2000) The evolution of cell adhesion. J Cell Biol 150:F89–F96.  https://doi.org/10.1083/jcb.150.2.F89 CrossRefGoogle Scholar
  13. Kamada N, Seo SU, Chen GY, Nunez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13:321–335.  https://doi.org/10.1038/nri3430 CrossRefGoogle Scholar
  14. Kim B, Suo B, Emmons SW (2016) Gene function prediction based on developmental transcriptomes of the two sexes in C.elegans. Cell Rep 17:917–928.  https://doi.org/10.1016/j.celrep.2016.09.051 CrossRefGoogle Scholar
  15. Kimber MJ, Fleming CC, Prior A, Jones JT, Halton DW, Maule AG (2002) Localisation of Globodera pallida FMRFamide-related peptide encoding genes using in situ hybridisation. Int J Parasitol 32:1095–1105.  https://doi.org/10.1016/S0020-7519(02)00084-X CrossRefGoogle Scholar
  16. Kostic AD, Howitt MR, Garrett WS (2013) Exploring host-microbiota interactions in animal models and humans. Genes Dev 27:701–718.  https://doi.org/10.1101/gad.212522.112 CrossRefGoogle Scholar
  17. Kumar P, Ganguly S, Somvanshi VS (2015) Identification of virulent entomopathogenic nematode isolates from a countrywide survey in India. Int J Pest Manage 61:135–143.  https://doi.org/10.1080/09670874.2015.1023869 CrossRefGoogle Scholar
  18. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefGoogle Scholar
  19. Lambshead PJD, Boucher G (2003) Marine nematode deep sea biodiversity–hyperdiverse or hype? J Biogeogr 30:475–485.  https://doi.org/10.1046/j.1365-2699.2003.00843.x CrossRefGoogle Scholar
  20. Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320.  https://doi.org/10.1093/molbev/msn067 CrossRefGoogle Scholar
  21. Lettre G, Kritikou EA, Jaeggi M, Calixto A, Fraser AG, Kamath RS, Ahringer J, Hengartner MO (2004) Genome-wide RNAi identifies p53-dependent and -independent regulators of germ cell apoptosis in C. elegans. Cell Death Differ 11:1198–1203.  https://doi.org/10.1038/sj.cdd.4401488 CrossRefGoogle Scholar
  22. Lewis EE, Glazer I, Gaugler R (1996) Location and behavioral effects of lectin binding on entomopathogenic nematodes with different foraging strategies. J Chem Ecol 22:455–466.  https://doi.org/10.1007/BF02033648 CrossRefGoogle Scholar
  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar
  24. Loukas A, Mullin NP, Tetteh KK, Moens L, Maizels RM (1999) A novel C-type lectin secreted by a tissue-dwelling parasitic nematode. Curr Biol 9:825–828.  https://doi.org/10.1016/S0960-9822(99)80366-2 CrossRefGoogle Scholar
  25. Mallo GV, Kurz CL, Couillault C, Pujol N, Granjeaud S, Kohara Y, Ewbank JJ (2002) Inducible antibacterial defense system in C. elegans. Curr Biol 12:1209–1214.  https://doi.org/10.1016/S0960-9822(02)00928-4 CrossRefGoogle Scholar
  26. O’Rourke D, Baban D, Demidova M, Mott R, Hodgkin J (2006) Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. Genome Res 16:1005–1016.  https://doi.org/10.1101/gr.50823006
  27. Pauli F, Liu YI, Kim YA, Chen P, Kim SK (2006) Chromosomal clustering and GATA transcriptional regulation of intestine-expressed genes in C. elegans. Development 133:287–295.  https://doi.org/10.1242/dev.02185 CrossRefGoogle Scholar
  28. Poinar GO (1975) Description and biology of a new insect parasitic rhabditoid, Heterorhabditis bacteriophora n. gen., n. sp.(Rhabditida; Heterorhabditidae n. fam.). Nematologica 21:463–470.  https://doi.org/10.1163/187529275X00239 CrossRefGoogle Scholar
  29. Ruby EG (2008) Symbiotic conversations are revealed under genetic interrogation. Nat Rev Microbiol 6:752–762.  https://doi.org/10.1038/nrmicro1958 CrossRefGoogle Scholar
  30. Schulenburg H, Hoeppner MP, Weiner J, Bornberg-Bauer E (2008) Specificity of the innate immune system and diversity of C-type lectin domain (CTLD) proteins in the nematode Caenorhabditis elegans. Immunobiol 213:237–250.  https://doi.org/10.1016/j.imbio.2007.12.004 CrossRefGoogle Scholar
  31. Schwarz R, Dayhoff M (1979) Matrices for detecting distant relationships. In: M. Dayhoff (ed) Atlas of protein sequences, National Biomedical Research Foundation, p 353–358Google Scholar
  32. Shapira M, Hamlin BJ, Rong J, Chen K, Ronen M, Tan M (2006) A conserved role for a GATA transcription factor in regulating epithelial innate immune responses. Proc Natl Acad Sci U S A 103:14086–14091.  https://doi.org/10.1073/pnas.0603424103 CrossRefGoogle Scholar
  33. Smith CJ, Watson JD, Spencer WC, O'Brien TD, Cha BJ, Albeg A, Treinin M, Miller DM (2010) Time-lapse imaging and cell-specific expression profiling reveal dynamic branching and molecular determinants of a multi-dendritic nociceptor in C. elegans. Dev Biol 345:18–33.  https://doi.org/10.1016/j.ydbio.2010.05.502 CrossRefGoogle Scholar
  34. Somvanshi VS, Kaufmann-Daszczuk B, Kim KS, Mallon S, Ciche TA (2010) Photorhabdus phase variants express a novel fimbrial locus, mad, essential for symbiosis. Mol Microbiol 77:1021–1038.  https://doi.org/10.1111/j.1365-2958.2010.07270.x Google Scholar
  35. Somvanshi VS, Sloup RE, Crawford JM, Martin AR, Heidt AJ, Kim KS, Clardy J, Ciche TA (2012) A single promoter inversion switches Photorhabdus between pathogenic and mutualistic states. Science 337:88–93.  https://doi.org/10.1126/science.1216641 CrossRefGoogle Scholar
  36. Somvanshi VS, Gahoi S, Banakar P, Thakur PK, Kumar M, Sajnani M, Pandey P, Rao U (2016) A transcriptomic insight into the infective juvenile stage of the insect parasitic nematode, Heterorhabditis indica. BMC Genomics 17:166.  https://doi.org/10.1186/s12864-016-2510-z CrossRefGoogle Scholar
  37. Spencer WC, Zeller G, Watson JD, Henz SR, Watkins KL, McWhirter RD, Petersen SC, Sreedharan VT, Widmer C, Jo J, Reinke VJ, Petrella LN, Strome S, Von Stetina SE, Katz M, Shaham S, Ratsch G, Miller DM (2011) A spatial and temporal map of C. elegans gene expression. Genome Res 21:325–341.  https://doi.org/10.1101/gr.114595.110 CrossRefGoogle Scholar
  38. Waterfield NR, Ciche T, Clarke D (2009) Photorhabdus and a host of hosts. Annu Rev Microbiol 63:557–574.  https://doi.org/10.1146/annurev.micro.091208.073507 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Division of Nematology, LBS CenterICAR-Indian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations