Advertisement

Symbiosis

, Volume 76, Issue 3, pp 303–311 | Cite as

Megaviridae-like particles associated with Symbiodinium spp. from the endemic coral Mussismilia braziliensis

  • Luiz Felipe Benites
  • Arthur Weiss Silva-Lima
  • Inácio Domingos da Silva-Neto
  • Paulo Sergio Salomon
Article
  • 156 Downloads

Abstract

Coral reefs are one of the most dynamic and productive marine ecosystems. The coral holobiont consists of the coral animal and a variety of associated microorganisms that include symbiotic dinoflagellates of the genus Symbiodinium, bacteria, archaea, fungi and viruses. The interactions among these components are crucial for coral health and, consequently, to the coral reef resilience to disturbance. Environmental stressors such as elevated temperature, high irradiance and ultraviolet (UV) radiation can lead to the breakdown of the coral-Symbiodinium symbiosis in a phenomenon known as “coral bleaching”. The present study provides evidence for virus-like particles (VLPs) induced in UV-irradiated Symbiodinium spp. cultures (clades A and C) that were isolated from the coral Mussismilia braziliensis, suggesting a latent viral infection in these strains. Scanning and transmission electron microscopy images of the UV stressed cultures revealed the presence of giant (ca. 450 nm) and small (ca. 40 nm) VLPs. Morphological features link the giant VLPs to the family Megaviridae. Symbiodinium spp. Megaviridae giant viruses and other associated viruses may represent dynamic forces driving and influencing health of the coral holobiont.

Keywords

Symbiodinium giant virus Megaviridae Abrolhos coral virus symbiosis 

Notes

Acknowledgements

We are thankful to Dr. Paulo Iiboshi Hargreaves and Dr. Glaucia Ank for their assistance with Symbiodinium spp. cultures. We greatly appreciate the helpful discussion, corrections and insightful comments provided by Lilian Caesar, Sheree Yau and two anonymous referees. This work was made possible by grants from the Brazilian Research Councils Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grants 305347/2016-0 and 407297/2013-8 to PSS), and Rio de Janeiro State Research Council Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

References

  1. Andrés G, García-Escudero R, Simón-Mateo C, Viñuela E (1998) African swine fever virus is enveloped by a two-membraned collapsed cisterna derived from the endoplasmic reticulum. J Virol 72:8988–9001PubMedPubMedCentralGoogle Scholar
  2. Anthony KRN, Kerswell AP (2007) Coral mortality following extreme low tides and high solar radiation. Mar Biol 151:1623–1631CrossRefGoogle Scholar
  3. Arslan D, Legendre M, Seltzer V, Abergel C, Claverie JM (2011) Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proceedings of the National Academy of Sciences of the United States of America 108:17486-17491CrossRefGoogle Scholar
  4. Bettarel Y, Bouvier T, Nguyen HK, Thu PT (2015) The versatile nature of coral-associated viruses. Environ Microbiol 17:3433–3439CrossRefPubMedGoogle Scholar
  5. Bettarel Y, Thuy NT, Huy TQ, Hoang PK, Bouvier T (2013) Observation of virus-like particles in thin sections of the bleaching scleractinian coral Acropora cytherea. J Mar Biol Assoc U K 93:909–912CrossRefGoogle Scholar
  6. Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16(Suppl 1):S129–S138CrossRefGoogle Scholar
  7. Brüwer JD, Agrawal S, Liew YJ, Aranda M, Voolstra CR (2017) Association of coral algal symbionts with a diverse viral community responsive to heat shock. BMC Microbiol 17:174CrossRefPubMedPubMedCentralGoogle Scholar
  8. Campos RK, Boratto PV, Assis FL, Aguiar ER, Silva LC, Albarnaz JD, Dornas FP, Trindade GS, Ferreira PP, Marques JT, Robert C, Raoult D, Kroon EG, La Scola B, Abrahão JS (2014) Samba virus: a novel Mimivirus from a giant rain forest, the Brazilian Amazon. Virol J 11:95CrossRefPubMedPubMedCentralGoogle Scholar
  9. Castro AP, Araújo SDJR, Reis AM, Moura RL, Francini-Filho RB, Pappas GJR, Rodrigues TB, Thompson FL, Krüger RH (2010) Bacterial community associated with healthy and diseased reef coral Mussismilia hispida from Eastern Brazil. Micro Eco 59:658–667CrossRefGoogle Scholar
  10. Castro CB, Pires DO (1999) A bleaching event on a Brazilian coral reef. Braz J Oceanogr 47:87–90CrossRefGoogle Scholar
  11. Cervino JM, Hayes R, Goreau TJ, Smith GW (2004) Zooxanthellae regulation in yellow blotch/band and other coral diseases contrasted with temperature related bleaching: In situ destruction vs expulsion. Symbiosis 37:6–85Google Scholar
  12. Claverie JM, Grzela R, Lartigue A, Bernadac A, Nitsche S, Vacelet J, Ogata H, Abergel C (2009) Mimivirus and Mimiviridae: Giant viruses with an increasing number of potential hosts, including corals and sponges. J Invertebr Pathol 101:172–180CrossRefPubMedGoogle Scholar
  13. Correa AMS, Ainsworth TD, Rosales SM, Thurber AR, Butler CR, Vega Thurber RL (2016) Viral outbreak in corals associated with an in situ bleaching event: atypical herpes-like viruses and a new megavirus infecting Symbiodinium. Front Microbiol 7:00127CrossRefGoogle Scholar
  14. Correa AMS, Welsh RM, Vega Thurber RL (2013) Unique nucleocytoplasmic dsDNA and +ssRNA viruses are associated with the dinoflagellate endosymbionts of corals. ISME J 7:13–27CrossRefPubMedGoogle Scholar
  15. Davy J, Patten N (2007) Morphological diversity of virus-like particles within the surface microlayer of scleractinian corals. Aquat Microb Ecol 47:37–44CrossRefGoogle Scholar
  16. Davy SKS, Burchett G, Dale AL, Davies P, Davy JE, Muncke C, Hoegh-Guldberg O, Wilson WH (2006) Viruses: agents of coral disease? Diseases of Aquatic Organisms 69:101–110CrossRefPubMedGoogle Scholar
  17. Dinsdale EA, Pantos O, Smriga S, Edwards RA, Angly F, Wegley L, Hatay M, Hall D, Brown E, Haynes M, Krause L, Sala E, Sandin SA, Thurber RV, Willis BL, Azam F, Knowlton N, Rohwer F (2008) Microbial ecology of four coral atolls in the Northern Line Islands. PLoS ONE 3:e1584CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fernando SC, Wang J, Sparling K, Garcia GD, Francini-Filho RB, de Moura RL, Paranhos R, Thompson FL, Thompson JR (2014) Microbiota of the major South Atlantic reef building coral Mussismilia. Micro Eco 69:267–280CrossRefPubMedGoogle Scholar
  19. Fischer MG, Suttle CA (2011) A virophage at the origin of large DNA transposons. Science 332:231–234CrossRefPubMedGoogle Scholar
  20. Francini-Filho RB, Moura RL, Thompson FL, Reis RM, Kaufman L, Kikuchi RKP, Leão ZMAN (2008) Diseases leading to accelerated decline of reef corals in the largest South Atlantic reef complex (Abrolhos Bank, eastern Brazil). Mar Pollut Bull 56:1008–1014CrossRefPubMedGoogle Scholar
  21. Francini-Filho RB, Reis R, Meirelles P, Moura R, Thompson F, Kikuchi R, Kaufman L (2010) Seasonal prevalence of white plague like disease on the endemic Brazilian reef coral Mussismilia braziliensis. Lat Am J Aquat Res 38:292–296CrossRefGoogle Scholar
  22. Garcia GD, Gregoracci GB, Santos E de O, Meirelles PM, Silva GGZ, Edwards R, Sawabe T, Gotoh K, Nakamura S, Iida T, de Moura RL, Thompson FL (2013) Metagenomic analysis of healthy and white plague-affected Mussismilia braziliensis corals. Microb Ecol 65:1076–1086CrossRefPubMedGoogle Scholar
  23. Garcia GD, Santos Ede O, Sousa GV, Zingali RB, Thompson CC, Thompson FL (2016) Metaproteomics reveals metabolic transitions between healthy and diseased stony coral Mussismilia braziliensis. Mol Ecol 25:4632–4644CrossRefPubMedGoogle Scholar
  24. Gleason DF, Wellington GM (1993) Ultraviolet radiation and coral bleaching. Nature 365:836–838CrossRefGoogle Scholar
  25. Glynn PW (1993) Coral reef bleaching: ecological perspectives. Coral Reefs 12:1–17CrossRefGoogle Scholar
  26. Goulet TL, Coffroth MA (2004) The genetic identity of dinoflagellate symbionts in Caribbean octocorals. Coral Reefs 23:465–472Google Scholar
  27. Greiner T, Frohns F, Kang M, Van Etten JL, Käsmann A, Moroni A, Hertel B, Thiel G (2009) Chlorella viruses prevent multiple infections by depolarizing the host membranes. J Gen Virol 90:2033–2039CrossRefPubMedGoogle Scholar
  28. Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. P  Natl Acad Sci USA 96:2192–2197CrossRefGoogle Scholar
  29. Hoegh-Guldberg O (2004) Coral reefs in a century of rapid environmental change. Symbiosis 37:1–31Google Scholar
  30. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742CrossRefPubMedGoogle Scholar
  31. Kendall A, McDonald M, Bian W, Bowles T, Baumgarten SC, Shi J, Stewart PL, Bullitt E, Gore D, Irving TC, Havens WM, S a G, Wall JS, Stubbs G (2008) Structure of flexible filamentous plant viruses. J Virol 82:9546–9554CrossRefPubMedPubMedCentralGoogle Scholar
  32. Knowlton N, Rohwer F (2003) Microbial mutualisms on coral reefs: the host as a habitat. Am Nat 162:S51–S62Google Scholar
  33. La Scola B, Desnues C, Pagnier I, Robert C, Barrassi L, Fournous G, Merchat M, Suzan-Monti M, Forterre P, Koonin E (2008) The virophage as a unique parasite of the giant Mimivirus. Nature 455:100–104CrossRefPubMedGoogle Scholar
  34. Lawrence SA, Davy JE, Wilson WH, Hoegh-Guldberg O, Davy SK (2014a) Porites white patch syndrome: associated viruses and disease physiology. Coral Reefs 34:249–257CrossRefGoogle Scholar
  35. Lawrence SA, Wilson WH, Davy JE, Davy SK (2014b) Latent virus-like infections are present in a diverse range of Symbiodinium spp. (Dinophyta). J Phycol 50:984–997CrossRefPubMedGoogle Scholar
  36. Lawrence SA, Floge SA, Davy JE, Davy SK, Wilson WH (2017) Exploratory analysis of Symbiodinium transcriptomes reveals potential latent infection by large dsDNA viruses. Environ Microbiol 19(10):3909–3919CrossRefPubMedGoogle Scholar
  37. Leão ZMAN, Kikuchi RKP (2005) A relic coral fauna threatened by global changes and human activities, Eastern Brazil. Mar Pollut Bull 51:599–611CrossRefPubMedGoogle Scholar
  38. Lesser MP (1996) Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol Oceanogr 41:271–283CrossRefGoogle Scholar
  39. Levin RA, Voolstra CR, Weynberg KD, and van Open, MJH (2017). Evidence for a role of viruses in the thermal sensitivity of coral photosymbionts. ISME J 11(3):808-812CrossRefPubMedPubMedCentralGoogle Scholar
  40. Littman R, Willis BL, Bourne DG (2011) Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef. Environ Microbiol Rep 3:651–660CrossRefPubMedGoogle Scholar
  41. Lohr J, Munn CB, Wilson WH (2007) Characterization of a latent virus-like infection of symbiotic zooxanthellae. Appl Environ Microbiol 73:2976–2981CrossRefPubMedPubMedCentralGoogle Scholar
  42. Margulis L (1991) Symbiogenesis and symbionticism. In: Margulis L, Fester R (eds) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press, Cambridge, pp 1–24Google Scholar
  43. Marhaver KL, Edwards RA, Rohwer F (2008) Viral communities associated with healthy and bleaching corals. Environ Microbiol 10:2277–2286CrossRefPubMedPubMedCentralGoogle Scholar
  44. Minarovits J (2006) Epigenotypes of latent herpesvirus genomes. Curr Top Microbiol Immunol 310:61–80PubMedGoogle Scholar
  45. Mindell DP (1992) Phylogenetic consequences of symbioses: Eukarya and Eubacteria are not monophyletic taxa. BioSystems 27:53–62CrossRefPubMedGoogle Scholar
  46. Mutsafi Y, Shimoni E, Shimon A, Minsky A (2013) Membrane assembly during the infection cycle of the giant Mimivirus. PLoS Pathogens 9:e1003367CrossRefPubMedPubMedCentralGoogle Scholar
  47. Nguyen-Kim H, Bouvier T, Bouvier C, Doan-Nhu H, Nguyen-Ngoc L, Rochelle-Newall E, Baudoux AC, Desnues C, Reynaud S, Ferrier-Pages C, Bettarel Y (2014) High occurrence of viruses in the mucus layer of scleractinian corals. Environ Microbiol Rep 66:675–682CrossRefGoogle Scholar
  48. Patten NL, Harrison PL, Mitchell JG (2008) Prevalence of virus-like particles within a staghorn scleractinian coral (Acropora muricata) from the Great Barrier Reef. Coral Reefs 27:569–580CrossRefGoogle Scholar
  49. Pochon X, LaJeunesse TC, Pawlowski J (2004) Biogeographic partitioning and host specialization among foraminiferan dinoflagellate symbionts (Symbiodinium; Dinophyta). Mar Biol 146:17–27CrossRefGoogle Scholar
  50. Reis AMM, Araújo SD, Moura RL, Francini-Filho RB, Pappas G, Coelho AMA, Krüger RH, Thompson FL (2009) Bacterial diversity associated with the Brazilian endemic reef coral Mussismilia braziliensis. J Appl Microbiol 106:1378–1387CrossRefPubMedGoogle Scholar
  51. Riegl B, Bruckner A, Coles SL, Renaud P, Dodge RE (2009) Coral reefs: Threats and conservation in an era of global change. Ann N Y Acad Sci 1162:136–186CrossRefPubMedGoogle Scholar
  52. Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10CrossRefGoogle Scholar
  53. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362CrossRefPubMedGoogle Scholar
  54. Rowe JM, Dunlap JR, Gobler CJ, Anderson OR, Gastrich MD, Wilhelm SW (2008) Isolation of a non-phage-like lytic virus infecting Aureococcus anophagefferens. J Phycol 44:71–76CrossRefPubMedGoogle Scholar
  55. Sampayo EM, Ridgway T, Franceschinis L, Roff G, Hoegh-Guldberg O, Dove S (2016) Coral symbioses under prolonged environmental change: living near tolerance range limits. Sci Rep 6:36271CrossRefPubMedPubMedCentralGoogle Scholar
  56. Santini S, Jeudy S, Bartoli J, Poirot O, Lescot M, Abergel C, Barbe V, Wommack KE, Noordeloos AAM, Brussaard CPD, Claverie JM (2013) Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes. P Natl Acad Sci USA 110:10800–10805CrossRefGoogle Scholar
  57. Silva-Lima AW, Walter JM, Garcia GD, Ramires N, Ank G, Meirelles PM, Nobrega AF, Siva-Neto ID, Moura RL, Salomon PS, Thompson CC, Thompson FL (2015) Multiple Symbiodinium Strains Are Hosted by the Brazilian Endemic Corals Mussismilia spp. Microb Ecol 70:301–310CrossRefPubMedGoogle Scholar
  58. Silveira CB, Gregoracci GB, Coutinho FH, Silva GGZ, Haggerty JM, de Oliveira LS, Cabral AS, Rezende CE, Thompson CC, Francini-Filho RB, Edwards RA, Dinsdale EA, Thompson FL (2017) Bacterial community associated with the reef coral Mussismilia braziliensis’s momentum boundary layer over a diel cycle. Front Microbiol 8:784Google Scholar
  59. Soffer N, Brandt ME, Correa AMS, Smith TB, Thurber RV (2014) Potential role of viruses in white plague coral disease. ISME J 8:271–283CrossRefPubMedGoogle Scholar
  60. Suzan-Monti M, La Scola B, Barrassi L, Espinosa L, Raoult D (2007) Ultrastructural characterization of the giant volcano-like virus factory of Acanthamoeba polyphaga Mimivirus. PLoS One 2:e328CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sweet MJ, Bythell MT (2016) The role of viruses in coral health and disease. J Invertebr Pathol 147:136–144CrossRefPubMedGoogle Scholar
  62. Thompson JR, Rivera HE, Closek CJ, Medina M (2014) Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. Front Cell Infect Microbiol 4:176PubMedGoogle Scholar
  63. Thurber RLV, Correa AMS (2011) Viruses of reef-building scleractinian corals. J Exp Mar Biol Ecol 408:102–113CrossRefGoogle Scholar
  64. Thurber RLV, Barott KL, Hall D, Liu H, Rodriguez-Mueller B, Desnues C, Edwards RA, Haynes M, Angly FE, Wegley L, Rohwer FL (2008) Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa. P Natl Acad Sci USA 105:18413–18418Google Scholar
  65. Thurber RV, Payet JP, Thurber AR, Correa AMS (2017) Virus–host interactions and their roles in coral reef health and disease. Nat Rev Microbiol 15:205–216CrossRefPubMedGoogle Scholar
  66. van Oppen MJH, Leong JA, Gates RD (2009) Coral-virus interactions: A double-edged sword? Symbiosis 47:1–8CrossRefGoogle Scholar
  67. van Oppen MJH, Lough JM (2009) Introduction: Coral Bleaching - Patterns, Processes, Causes and Consequences. In: van Oppen MJH, Lough JM (eds) Coral Bleaching. Ecological Studies, vol 205. Springer, Berlin, Heidelberg, pp 1-5Google Scholar
  68. Veesler D, Cambillau CA (2011) A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol Mol Biol Rev 75:423–433CrossRefPubMedPubMedCentralGoogle Scholar
  69. Weynberg KD, Levin RA, Neave MJ, Clode PL, Voolstra CR, Brownlee C, Laffy PW, Webster NS, Wood-Charlson EM, van Oppen MJH (2017) Prevalent and persistent viral infection in cultures of the coral algal endosymbiont, Symbiodinium. Coral Reefs 36(3):773-784CrossRefGoogle Scholar
  70. Wilson WH, Dale AL, Davy JE, Davy SK (2005) An enemy within? Observations of virus-like particles in reef corals. Coral Reefs 24:145–148CrossRefGoogle Scholar
  71. Wilson WH, Francis I, Ryan K, Davy SK (2001) Temperature induction of viruses in symbiotic dinoflagellates. Aquat Microb Ecol 25:99–102CrossRefGoogle Scholar
  72. Wood-Charlson EM, Weynberg KD, Suttle CA, Roux S, van Oppen MJH (2015) Metagenomic characterization of viral communities in corals: mining biological signal from methodological noise. Environ Microbiol 17:3440-3449CrossRefPubMedGoogle Scholar
  73. Wooldridge SA (2013) Breakdown of the coral-algae symbiosis: Towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosciences 10:1647–1658CrossRefGoogle Scholar
  74. Zhou J, Huang H, Beardall J, Gao K (2016) Effect of UV radiation on the expulsion of Symbiodinium from the coral Pocillopora damicornis. J Photochem Photobiol B 166:12–17CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Departamento de Biologia Marinha, Instituto de BiologiaUniversidade Federal do Rio de Janeiro – UFRJRio de JaneiroBrazil
  2. 2.Programa de Pós-Graduação em Biodiversidade e Biologia EvolutivaUFRJRio de JaneiroBrazil
  3. 3.Departamento de Zoologia, Instituto de BiologiaUFRJRio de JaneiroBrazil

Personalised recommendations