Advertisement

Symbiosis

, Volume 77, Issue 1, pp 83–89 | Cite as

Protection of melon against Fusarium wilt-root knot nematode complex by endophytic fungi Penicillium brefeldianum HS-1

  • Guo-peng Miao
  • Juan HanEmail author
  • Ke-gui Zhang
  • Shun-chang Wang
  • Cheng-run Wang
Short Communication
  • 96 Downloads

Abstract

Colonization of plants by particular endophytic fungi can provide plants with improved defenses toward pests and pathogens. In this study, an endophytic fungi, strain HS-1, was isolated from the root of Cucumis melo L. and characterized as Penicillium brefeldianum. The crude metabolites showed great antifungal and antinematodal activities in vitro and the major bioactive component was purified and identified as brefeldin A (BFA). BFA had been reported as active metabolite against pathogenic fungi and nematodes, however, no research using BFA-producing fungi as a biocontrol agent was reported before. For this purpose, the protect effects of strain HS-1 against Fusarium wilt-root knot nematode complex was conducted in vivo. Results showed that strain HS-1 pre-inoculation significantly reduced the disease severity and gall numbers after 4 weeks of challenging by Fusarium pathogen, Fusarium oxysporum f. sp. Melonis and root-knot nematodes, Meloidogyne incognita Chitwood. The population of strain HS-1 on Cucumis melo L. dramatically increased after 4 weeks of challenging along with high accumulation of BFA in the roots of the host, indicating an antibiosis for competitor deterrence and host plant protection.

Keywords

Endophytic fungi Penicillium brefeldianum Melon Fusarium wilt Nematode 

Notes

Acknowledgements

This study was supported by Educational Commission of Anhui Province of China (KJ2016A668) and the National Natural Science Foundation of Anhui Province (1708085QC52).

Compliance with ethical standards

Conflict of interests

The authors declare that there is no conflict of interests.

Supplementary material

13199_2018_565_MOESM1_ESM.pdf (347 kb)
Online Resource 1 (PDF 346 kb)
13199_2018_565_MOESM2_ESM.pdf (102 kb)
Online Resource 2 (PDF 102 kb)

References

  1. Betina V (1992) Biological effects of the antibiotic brefeldin a (decumbin, cyanein, ascotoxin, synergisidin): a retrospective. Folia Microbiol 37:3–11CrossRefGoogle Scholar
  2. Bhattacharyya P, Goswami M, Bhattacharyya L (2016) Perspective of beneficial microbes in agriculture under changing climatic scenario: a review. J Phytology 8:26–41CrossRefGoogle Scholar
  3. Brundrett MC (2006) Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer, Verlag Berlin, Heidelberg, pp 281–298CrossRefGoogle Scholar
  4. Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J (2017) The root endophytic fungus Trichoderma atroviride induces foliar herbivory resistance in maize plants. Appl Soil Ecol.  https://doi.org/10.1016/j.apsoil.2017.10.004
  5. Flor-Peregrín E, Azcón R, Martos V, Verdejo-Lucas S, Talavera M (2014) Effects of dual inoculation of mycorrhiza and endophytic, rhizospheric or parasitic bacteria on the root-knot nematode disease of tomato. Biocontrol Sci Tech 24:1122–1136CrossRefGoogle Scholar
  6. Gao N, Shang Z-C, Yu P, Luo J, Jian K-L, Kong L-Y, Yang M-H (2017) Alkaloids from the endophytic fungus Penicillium brefeldianum and their cytotoxic activities. Chin Chem Lett 28:1194–1199.  https://doi.org/10.1016/j.cclet.2017.02.022 CrossRefGoogle Scholar
  7. Gava CAT, Pinto JM (2016) Biocontrol of melon wilt caused by fusarium oxysporum Schlect f. Sp. melonis using seed treatment with Trichoderma spp. and liquid compost. Biol Control 97:13–20CrossRefGoogle Scholar
  8. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330Google Scholar
  9. Goverse A, Smant G (2014) The activation and suppression of plant innate immunity by parasitic nematodes. Annu Rev Phytopathol 52:243–265CrossRefGoogle Scholar
  10. Hai-yan L, Rong H, Chen Q, Tao S, Ling-fei L, Zhi-wei Z (2008) Brefeldin A, a cytotoxin from an endophytic fungal strain of Eupenicillium brefeldianum isolated from Arisaema erubescens. Nat Prod Res Dev 20:24–27Google Scholar
  11. Hubbard M, Germida J, Vujanovic V (2012) Fungal endophytes improve wheat seed germination under heat and drought stress. Botany 90:137–149CrossRefGoogle Scholar
  12. Hussey RS, Barker KR (1973) A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis Rep 57:1025–1028Google Scholar
  13. Jaber LR, Enkerli J (2016) Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biol Control 103:187–195CrossRefGoogle Scholar
  14. Kamali N, Pourjam E, Sahebani N (2015) Elicitation of defense responses in tomato against Meloidogyne javanica and fusarium oxysporum f. Sp. Lycopersici wilt complex. J Crop Proy 4:29–38Google Scholar
  15. King SR, Davis AR, Liu W, Levi A (2008) Grafting for disease resistance. HortScience 43:1673–1676Google Scholar
  16. Liu B et al (2015) A new grafted rootstock against root-knot nematode for cucumber, melon, and watermelon. Agron Sustain Dev 35:251–259CrossRefGoogle Scholar
  17. Lugtenberg BJJ, Caradus JR, Johnson LJ (2016) Fungal endophytes for sustainable crop production. FEMS Microbiol Ecol 92:fiw194–fiw194.  https://doi.org/10.1093/femsec/fiw194 CrossRefGoogle Scholar
  18. Markakis EA, Fountoulakis MS, Daskalakis GC, Kokkinis M, Ligoxigakis EK (2016) The suppressive effect of compost amendments on fusarium oxysporum f.Sp. radicis-cucumerinum in cucumber and Verticillium dahliae in eggplant. Crop Prot 79:70–79CrossRefGoogle Scholar
  19. Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375.  https://doi.org/10.1146/annurev-phyto-082712-102340 CrossRefGoogle Scholar
  20. Porras-Alfaro A, Bayman P (2011) Hidden Fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315.  https://doi.org/10.1146/annurev-phyto-080508-081831 CrossRefGoogle Scholar
  21. Rahman M (2016) Bacillus spp.: a promising biocontrol agent of root, foliar, and postharvest diseases of plants. In: Islam MT, Rahman M, Pandey P, Jha CK, Aeron A (eds) Bacilli and Agrobiotechnology. Springer International Publishing, Cham, pp 113–141.  https://doi.org/10.1007/978-3-319-44409-3_6 CrossRefGoogle Scholar
  22. Shrivastava G et al (2015) Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a herbivorous insect. Symbiosis 65:65–74.  https://doi.org/10.1007/s13199-015-0319-1 CrossRefGoogle Scholar
  23. Stadler M, Mayer A, Anke H, Sterner O (1994) Fatty acids and other compounds with nematicidal activity from cultures of basidiomycetes. Planta Med 60:128–132CrossRefGoogle Scholar
  24. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefGoogle Scholar
  25. Vurro M, Evidente A, Andolfi A, Chiara Zonno M, Giordano F, Motta A (1998) Brefeldin a and α,β-dehydrocurvularin, two phytotoxins from Alternaria zinniae, a biocontrol agent of Xanthium occidentale. Plant Sci 138:67–79.  https://doi.org/10.1016/S0168-9452(98)00131-9 CrossRefGoogle Scholar
  26. Wang FW, Jiao RH, Cheng AB, Tan SH, Song YC (2007) Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin a obtained from Cladosporium sp. World J Microbiol Biotechnol 23:79–83.  https://doi.org/10.1007/s11274-006-9195-4 CrossRefGoogle Scholar
  27. Wang YJ, Xue F, Wu YF, Xue YP, Zheng YG (2012) Development of macrolide lactone antibiotic brefeldin a fermentation process with Eupenicillium brefeldianum ZJB082702. J Biosci Bioeng 114:262–267.  https://doi.org/10.1016/j.jbiosc.2012.04.006 CrossRefGoogle Scholar
  28. Weber RWS, Stenger E, Meffert A, Hahn M (2004) Brefeldin a production by Phoma medicaginis in dead pre-colonized plant tissue: a strategy for habitat conquest? Mycol Res 108:662–671.  https://doi.org/10.1017/S0953756204000243 CrossRefGoogle Scholar
  29. Zhou W, Wheeler TA, Starr JL, Valencia CU, Sword GA (2018) A fungal endophyte defensive symbiosis affects plant-nematode interactions in cotton. Plant Soil 422:251–266.  https://doi.org/10.1007/s11104-016-3147-z CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Guo-peng Miao
    • 1
  • Juan Han
    • 1
    Email author
  • Ke-gui Zhang
    • 1
  • Shun-chang Wang
    • 1
  • Cheng-run Wang
    • 1
  1. 1.Department of BioengineeringHuainan Normal UniversityHuainanChina

Personalised recommendations