Advertisement

Symbiosis

, Volume 76, Issue 3, pp 265–275 | Cite as

Polyamines and flavonoids: key compounds in mycorrhizal colonization of improved and unimproved soybean genotypes

  • María S. Salloum
  • María F. Menduni
  • María P. Benavides
  • Mariana Larrauri
  • Celina M. Luna
  • Sonia Silvente
Article

Abstract

Modern breeding programs might have caused a reduction in plant responsiveness to arbuscular mycorrhizal fungi (AMF). Flavonoids and polyamines (PAs) are hypothesized to play a role in this symbiosis. We tested the effects of them in AMF roots of improved (I-1) and unimproved (UI-4) soybean genotypes, under the hypothesis that domestication decreased their concentration in roots, affecting AMF colonization, particularly arbuscule formation. After 20 days of treatment, AMF roots of UI-4 genotype had greater amount of total flavonoids/phenols and PAs while in I-1 genotype no differences were observed between roots of mycorrhizal (M) and non mycorrhizal (NM) plants. Exogenous application of flavonoids led to an increase in arbuscules in both genotypes. Improved-1 genotype needed higher levels of flavonoids to reach the percentage of mycorrhization achieved by UI-4 control. In regard to PAs, mycorrhizal plants of both genotypes had higher endogenous concentration than NM plants, however, the highest concentration, especially of putrescine (put) was in UI-4 M genotype. To check the participation of put in symbiosis we used RNAi silencing methodology. Down regulation of the GmADC transcript, involved in put formation, had a profound negative effect on mycorrhizal colonization and also affected the normal development of the plant. By contrast, down regulation of GmDAO, in which ADC transcript was expressed, arbuscule formation was similar to control plant. Our results suggest that mycorrhizal colonization is affected by soybean domestication particularly arbuscule formation and this effect seems to be mediated by the endogenous roots levels of flavonoids and PAs, especially put.

Keywords

Arbuscular mycorrhizal fungi (AMF) Flavonoids Polyamines, improved and unimproved soybean genotypes 

Notes

Acknowledgements

This work was funded by National Promotion Agency Science and Technology (ANPCyT) through the Fund for Scientific Research and Technology (FONCyT): Projects of Scientific and Technological Research (PICT) 2012-0339 and by the National Institute of Agricultural Technology (INTA) through Projects N°1133032 and N°1127033. The National Council of Scientific and Technical Research (CONICET) awarded the scholarship to Maria S. Salloum and Scientific Research and Technology (FONCyT) awarded the scholarship to Maria F. Menduni. We are very grateful to Dr. Javier Gilli for providing the soybean seeds. The authors are thankful to Alicia López López for manuscript language editing.

References

  1. Akiyama K, Matsuoka H, Hayashi H (2002) Isolation and identification of a phosphate deficiency-induced C-glycosyl flavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Molecular Plant Microbe Interaction 15:334–340CrossRefGoogle Scholar
  2. Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249CrossRefGoogle Scholar
  3. Alet AI, Sánchez DH, Cuevas JC, Marina M, Carrasco P, Altabella T (2012) New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress. Plant Sci 182:94–100CrossRefGoogle Scholar
  4. Angelini R, Bragaloni M, Federico R, Infantino A, Porta-Puglia A (1993) Involvement of polyamines, diamine oxidase and peroxidase in resistance of chickpea to Ascochyta rabiei. J Plant Physiol 142:704–709CrossRefGoogle Scholar
  5. Aziz A, Martin-Tanguy J, Larher F (1998) Stress induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride. Physiol Plant 104:195–202CrossRefGoogle Scholar
  6. Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20:301–317CrossRefGoogle Scholar
  7. Balestrini R, Bonfante P (2005) The interface compartment in arbuscular mycorrhizae: a special type of plant cell wall? Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biol 139(1):8–15CrossRefGoogle Scholar
  8. Becard G, Taylor LP, Douds DD, Pfeffer PE, Doner LW (1995) Flavonoids are not necessary plant signal compounds in arbuscular mycorrhizal symbioses. Mol Plant-Microbe Interact 8(2):252–258CrossRefGoogle Scholar
  9. Cesco MAO (2010) Pesquisa de Fatores Associados à Virulência de Salmonella Hadar através da Reação em Cadeia da Polimerase (PCR). Dissertação de Mestrado em Ciências Veterinárias Faculdade de Veterinária Universidade Federal do Rio Grande do Sul Porto Alegre RS 84pGoogle Scholar
  10. Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Function of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88CrossRefGoogle Scholar
  11. Delis C, Dimou M, Flemetakis E, Aivalakis G, Katinakis P (2006) A root-and hypocotyl-specific gene coding for copper-containing amine oxidase is related to cell expansion in soybean seedlings. J Exp Bot 57(1):101–111CrossRefGoogle Scholar
  12. El Ghachtouli N, Paynot M, Morandi D, Martin-Tanguy J, Gianinazzi S (1995) The effect of polyamines on endomycorrhizal infection of wildtype Pisum sativum, cv. Frisson (nod+myc+) and two mutants (nod−myc +and nod−myc−). Mycorrhiza 5:189–192Google Scholar
  13. El Ghachtouli N, Martin-Tanguy J, Paynot M, Gianinazzi S (1996) First report of the inhibition of arbuscular mycorrhizal infection of Pisum sativum by specific and irreversible inhibition of polyamine biosynthesis or by gibberellic acid treatment. FEBS Lett 385:189–192CrossRefGoogle Scholar
  14. Estrada-Navarrete G, Alvarado-Affantranger X, Olivares JE, Guillén G, Díaz-Camino C, Campos F, Quinto C, Gresshoff PM, Sanchez F (2007) Fast, efficient and reproducible genetic transformation of Phaseolus spp. by Agrobacterium rhizogenes. Nat Protoc 2:1819–1824CrossRefGoogle Scholar
  15. Fuell C, Elliott KA, Hanfrey CC, Franceschetti M, Michael AJ (2010) Polyamine biosynthetic diversity in plants and algae. Plant Physiol Biochem 48:513–520CrossRefGoogle Scholar
  16. Gadkar V, David-Schwarz R, KuniK T, Kapulnik Y (2001) Arbuscular mycorrhizal fungal colonisation. Factors involved in host recognition. Plant Physiol 127:1493–1499CrossRefGoogle Scholar
  17. García-Garrido JM, Ocampo JA (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J Exp Bot 53:1377–1386CrossRefGoogle Scholar
  18. Gianinazzi-Pearson V, Gianinazzi S (1989) Cellular and genetical aspects of interactions between hosts and fungal symbionts in mycorrhizae. Genome 31:336–341CrossRefGoogle Scholar
  19. Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45CrossRefGoogle Scholar
  20. Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42CrossRefGoogle Scholar
  21. Harrison M (1999) Biotrophic interfaces and nutrient transport in plant – fungal symbioses. J Exp Bot 50:1013–1022CrossRefGoogle Scholar
  22. Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14CrossRefGoogle Scholar
  23. Hassan S, Mathesius U (2012) The role of flavonoids in root–rhizosphere signalling: opportunities and challenges for improving plant–microbe interactions. J Exp Bot 63(9):3429–3444CrossRefGoogle Scholar
  24. Heckman JR, Angle JS (1987) Variation between soybean cultivars in vesicular arbuscular mycorrhizal fungi colonization. Agron J 79:428–430CrossRefGoogle Scholar
  25. Hetrick BAD, Wilson GWT, Cox TS (1993) Mycorrhizal dependence of modern wheat cultivars and ancestors: a synthesis. Can J Bot 71:512–518CrossRefGoogle Scholar
  26. Hoagland, Arnon (1950) The water-culture method for growing plants without soil. University of California, College of Agriculture, Agricultural Experiment Station, BerkeleyGoogle Scholar
  27. Hummel I, Couée I, El Amrani A, Martin-Tanguy J, Hennion F (2002) Involvement of polyamines in root development at low temperature in the subantarctic cruciferous species Pringlea antiscorbutica. J Exp Bot 53:1463–1473CrossRefGoogle Scholar
  28. Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10:22–29CrossRefGoogle Scholar
  29. Khalil S, Loynachan TE, Tabatabai MA (1994) Mycorrhizal dependency and nutrient uptake by improved and unimproved corn and soybean cultivars. Agron J 86:949–958CrossRefGoogle Scholar
  30. Khalil S, Loynachan TE, Tabatabai MA (1999) Plant determinants of mycorrhizal dependency in soybean. Agron J 91:135–141CrossRefGoogle Scholar
  31. Kumar A, Altabella T, Taylor MA, Tiburcio AF (1997) Recent advances in polyamine research. Trends Plant Sci 2:124–130CrossRefGoogle Scholar
  32. Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228(3):367–381CrossRefGoogle Scholar
  33. Larose G, Chênevert R, Moutoglis P, Gagné S, Piché VH (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159(12):1329–1339CrossRefGoogle Scholar
  34. Liu JH, Nakajima I, Moriguchi T (2011) Effects of salt and osmotic stressed on free polyamine content and expression of polyamine biosynthetic genes in Vitis vinifera. Biol Plant 55:340–344CrossRefGoogle Scholar
  35. Luximon-Ramma A, Bahorun T, Crozier A, Zbarsky V, Datla KP, Dexter DT, Aruoma OI (2004) Characterization of antioxidant functions of flavonoid and proanthocyanidins in Mauritian black teas. Food Res Int 38:357–367CrossRefGoogle Scholar
  36. Mattoo A, Minocha S, Minocha R, Handa A (2010) Polyamines and cellular metabolism in plants: transgenic approaches reveal different responses to diamine putrescine versus higher polyamines spermidine and spermine. Amino Acids 38:405–413CrossRefGoogle Scholar
  37. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method, which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytol 115:495–501CrossRefGoogle Scholar
  38. Møller SG, McPherson MJ (1998) Developmental expression and biochemical analysis of the Arabidopsis atao1 gene encoding an H2O2- generating diamine oxidase. Plant J 13:781–791CrossRefGoogle Scholar
  39. Nepote V, Grosso NR, Guzman CA (2005) Optimization of extraction of phenolic antioxidants from peanut skins. J Agric Food Chem 85:33–38CrossRefGoogle Scholar
  40. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root Endosymbioses. Nat Rev Microbiol 6:10–763CrossRefGoogle Scholar
  41. Pérez-Jaramillo JE, Mendes R, Raaijmakers JM (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant molec Boil 90:635–644CrossRefGoogle Scholar
  42. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161CrossRefGoogle Scholar
  43. Phillips DA, Tsai SM (1992) Flavonoids as plant signals to rhizosphere microbes. Mycorrhiza 1(2):55–58CrossRefGoogle Scholar
  44. Plenchette C, Fortin JA, Furlan V (1983) Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. I. Mycorrhizal dependency under field conditions. Plant Soil 70:199–209CrossRefGoogle Scholar
  45. Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750CrossRefGoogle Scholar
  46. Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcón-Aguilar C (2002) Localized vs systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534CrossRefGoogle Scholar
  47. Rea G, Matoui O, Infantino A, Federico R, Angelini R (2002) Copper amine oxidase expression in defence responses to wounding and Ascochyta rabiei invasion. Plant Physiol 128:865–875CrossRefGoogle Scholar
  48. Rengel Z (2002) Genetic control of root exudation. Plant Soil 245:59–70CrossRefGoogle Scholar
  49. Requena N, Serrano E, Ocón A, Breuniger M (2007) Plant signals and fungal perception during arbuscular mycorrhiza establishment. Phytochemistry 68:33–40CrossRefGoogle Scholar
  50. Rezvanypour S, Hatamzadeh A, Elahinia SA, Asghari HR (2015) Exogenous polyamines improve mycorrhizal development and growth and flowering of Freesia hybrid. J Hort Research 23(2):17–25Google Scholar
  51. Salloum MS, Guzzo MC, Velazquez MS, Sagadin MB, Luna CM (2016) Variability in colonization of arbuscular mycorrhizal fungi and its effect on mycorrhizal dependency of improved and unimproved soybean cultivars. Can J Microbiol 62(12):1034–1040CrossRefGoogle Scholar
  52. Sánchez-Rangel D, Chávez-Martínez AI, Rodríguez-Hernández AA, Maruri-López I, Urano K, Shinozaki K, Jiménez-Bremont JF (2016) Simultaneous silencing of two arginine decarboxylase genes alters development in Arabidopsis. Front Plant Sci.  https://doi.org/10.3389/fpls.2016.00300
  53. Sannazzaro AI, Álvarez CL, Menéndez AB, Pieckenstain FL, Albertó EO, Ruiz OA (2004) Ornithine and arginine decarboxylase activities and effect of some polyamine biosynthesis inhibitors on Gigaspora rosea germinating spores. FEMS Microbiol Letters 230(1):115–121CrossRefGoogle Scholar
  54. Singh R, Soni SK, Kalra A (2012) Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq under organic field conditions. Mycorrhiza 23(1):3544Google Scholar
  55. Smith TA, Barker JHA (1988) The di-and polyamine oxidases in plants. In: Zappia V, Pegg AE (eds) Progress in polyamine research. Plenum Press, New York, pp 573–587CrossRefGoogle Scholar
  56. Smith BN, Meeuse BJD (1966) Production of volatiles amines in some Arum lily species. Plant Physiol 41:343–347CrossRefGoogle Scholar
  57. Strack D, Vogt T, Schliemann W (2003) Recent advances in betalain research. Phytochemistry 62:247–269CrossRefGoogle Scholar
  58. Sugiyama A, Yazaki K (2014) Flavonoids in plant rhizospheres: secretion, fate and their effects on biological communication. Plant Biotechnol 31(5):431–443CrossRefGoogle Scholar
  59. Takahashi T, Kakehi JI (2010) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot 105:1–6CrossRefGoogle Scholar
  60. Tisi A, Federico R, Moreno S, Lucretti S, Moschou PN, Roubelakis-Angelakis KA (2011) Perturbation of polyamine catabolism can strongly affect root development and xylem differentiation. Plant Physiol 157:200–215CrossRefGoogle Scholar
  61. Vierheilig H, Piché Y (2002) Signalling in arbuscular mycorrhiza: facts and hypotheses. In: Buslig B, Manthey J (eds) Flavonoids in cell function. Kluwer, New York, pp 23–39CrossRefGoogle Scholar
  62. Walters DR (2000) Polyamines in plant–microbe interactions. Physiol Mol Plant Pathol 57:137–146CrossRefGoogle Scholar
  63. Waterman PG, Mole S (1994) Analysis of phenolic plant metabolites. Blackwell Scientific Publications, OxfordGoogle Scholar
  64. Wu QS, He XH, Zou YN, Liu CY, Xiao J, Li Y (2012a) Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines. Plant Growth Regul 68(1):27–35CrossRefGoogle Scholar
  65. Wu QS, Ying-Ning ZOU, Min LIU, Cheng K (2012b) Effects of exogenous putrescine on mycorrhiza, root system architecture, and physiological traits of Glomus mosseae-colonized trifoliate orange seedlings. Not Bot Horti Agrobo 40(2):80–85CrossRefGoogle Scholar
  66. Wu QS, Peng YH, Zou YN, Liu CY (2010a) Exogenous polyamines affect mycorrhizal development of Glomus mosseae-colonized citrus (Citrus tangerine) seedlings. Sci Asia 36:254–258CrossRefGoogle Scholar
  67. Wu QS, Zou YN, He XH (2010b) Exogenous putrescine, not spermine or spermidine, enhances root mycorrhizal development and plant growth of trifoliate orange (Poncirus trifoliata) seedlings. Int J Agric Biol 12:576–580Google Scholar
  68. Wu QS, Zou YN, Zhan TT, Liu CY (2010c) Polyamines participate in mycorrhizal and root development of citrus (Citrus tangerine) seedling. Not Bot Horti Agrobo 38(2):25–31Google Scholar
  69. Wu QS, Xia RX, Zou YN (2008) Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. Eur J Soil Biol 44:122–128CrossRefGoogle Scholar
  70. Yao Q, Wang LR, Xing QW, Chen JZ, Zhu HH (2010) Exogenous polyamines influence root morphogenesis and arbuscular mycorrhizal development of Citrus limonia seedlings. Plant Growth Regul 60:27–33CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • María S. Salloum
    • 1
    • 5
  • María F. Menduni
    • 2
    • 5
  • María P. Benavides
    • 3
  • Mariana Larrauri
    • 4
    • 1
  • Celina M. Luna
    • 1
    • 5
  • Sonia Silvente
    • 6
  1. 1.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Instituto Nacional de Tecnología Agropecuaria (INTA), Centro de Investigaciones Agropecuarias (CIAP)Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV). Camino 60 cuadrasCórdobaArgentina
  2. 2.Fondo para la Investigación Científica y Tecnológica (FONCyT) - Instituto Nacional de Tecnología Agropecuaria (INTA)Centro de Investigaciones Agropecuarias (CIAP), Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV). Camino 60 cuadrasCórdobaArgentina
  3. 3.Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Junín 956Universidad de Buenos AiresBuenos AiresArgentina
  4. 4.Facultad de Ciencias AgropecuariasUniversidad Nacional de Córdoba (IMBIV—CONICET)CórdobaArgentina
  5. 5.Instituto Nacional de Tecnología Agropecuaria (INTA), Centro de Investigación Agropecuaria (CIAP)Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV)CórdobaArgentina
  6. 6.Instituto de Ambiente de Montaña y Regiones Áridas (IAMRA)Universidad Nacional de Chilecito (UNdeC)La RiojaArgentina

Personalised recommendations