Advertisement

Symbiosis

, Volume 76, Issue 2, pp 77–96 | Cite as

‘The importance of symbiosis in philosophy of biology: an analysis of the current debate on biological individuality and its historical roots’

  • Javier Suárez
Article

Abstract

Symbiosis plays a fundamental role in contemporary biology, as well as in recent thinking in philosophy of biology. The discovery of the importance and universality of symbiotic associations has brought new light to old debates in the field, including issues about the concept of biological individuality. An important aspect of these debates has been the formulation of the hologenome concept of evolution, the notion that holobionts are units of natural selection in evolution. This review examines the philosophical assumptions that underlie recent proposal of the hologenome concept of evolution, and traces those debates back in time to their historical origins, to the moment when the connection between the topics of symbiosis and biological individuality first caught the attention of biologists. The review is divided in two parts. The first part explores the historical origins of the connection between the notion of symbiosis and the concept of biological individuality, and emphasizes the role of A. de Bary, R. Pound, A. Schneider and C. Merezhkowsky in framing the debate. The second part examines the hologenome concept of evolution and explores four parallelisms between contemporary debates and the debates presented in the first part of the essay, arguing that the different debates raised by the hologenome concept were already present in the literature. I suggest that the novelty of the hologenome concept of evolution lies in the wider appreciation of the importance of symbiosis for maintaining life on Earth as we know it. Finally, I conclude by suggesting the importance of exploring the connections among contemporary biology, philosophy of biology and history of biology in order to gain a better understanding of contemporary biology.

Keywords

Symbiosis History of biology Philosophy of biology Biological individuality Hologenome Holobiont Units of selection 

Notes

Acknowledgments

I would like to thank Staffan Müller-Wille, Sabina Leonelli, Caglar Karaca, John Dupré, José Díez, who read previous versions of this manuscript and made helpful comment. Benjamin Smart is especially acknowledged for all his help and detailed comments in the final version of the manuscript. Finally, I would like to thank two anonymous reviewers for their comments, which clearly helped in improving the content and structure of the paper. This work was economically supported by the Spanish Ministry of Education (FFU16/02570) and the Spanish Ministry of Economy and Competitiveness (FFI2016-76799-P).

References

  1. Booth A (2014) Symbiosis, selection and individuality. Bio Philos 29:657–673CrossRefGoogle Scholar
  2. Bordenstein SR, Theis KR (2015) Host biology in the light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol.  https://doi.org/10.1371/journal.pbio.1002226
  3. Bouchard F, Huneman P (2013) From groups to individuals. Evolution and emerging individuality. The MIT Press, LondonGoogle Scholar
  4. Boucher P (1965) Endosymbiosis of animals with plants microorganisms. Interscience Publishers, New YorkGoogle Scholar
  5. Boucias DG, Kariithi HM, Bourtzis K, Schneider DI, Kelley K, Miller WJ, Parker AG, Abd-Alla AMM (2013) Transgenerational transmission of the Glossina pallidipes Hytrosavirus depends on the presence of a functional Symbiome. PLoS One 8(4):e61150PubMedPubMedCentralCrossRefGoogle Scholar
  6. Brandt K (1881) Über das Zusammenleben von Algen und Tieren. Biologisches Centallblatt 1:524–527Google Scholar
  7. Brucker RM, Bordenstein SR (2012) Speciation by Symbiosis. Trends Ecol Evol 27(8):443–451PubMedCrossRefPubMedCentralGoogle Scholar
  8. Brucker RM, Bordenstein SR (2013) The capacious hologenome. Zoology 116:260–261PubMedCrossRefGoogle Scholar
  9. Carrapiço F (2015) Can we understand evolution without Symbiogenesis? In: Gontier N (ed) Reticulate evolution: Symbiogenesis, lateral gene transfer, hybridization and infectious heredity. Springer, London, pp 81–106CrossRefGoogle Scholar
  10. Chiu L, Eberl G (2016) Microorganisms as scaffolds of biological individuality: an eco-immunity account of the holobiont. Biol Philos 31:819–837CrossRefGoogle Scholar
  11. Clarke E (2010) The problem of biological individuality. Biological Theory 5(4):312–325CrossRefGoogle Scholar
  12. Crombie JM (1886) On the algo-lichen hypothesis. Journal of Linnaean Society 21:259–282CrossRefGoogle Scholar
  13. Cullen TW, Schofield WB, Barry NA, Putnam EE, Rundell EA, Trent MS, Degnan PH, Booth CJ, Yu H, Goodman AL (2015) Gut microbiota. Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science 347(6218):170–175PubMedPubMedCentralCrossRefGoogle Scholar
  14. Dawkins R (1976) The Selfish Gene. Oxford, Oxford University PressGoogle Scholar
  15. De Bary A (1879) Die Erscheinung der Symbiose. Verlag von Karl J, TrübnerGoogle Scholar
  16. Díaz, JS (2015) El mecanismo evolutivo de Margulis y los niveles de selección. Contrastes: Revista internacional de filosofía 20(1):7–24Google Scholar
  17. DiFrisco J (2017) Kinds of biological individuals: Sortals, projectability, and selection. Br J Philos SciGoogle Scholar
  18. Doolittle WF (2017) Darwinizing Gaia. J Theor Biol 434:11–19PubMedCrossRefGoogle Scholar
  19. Doolittle WF, Booth A (2017) It’s the song not the singer: an exploration of holobiosis and evolutionary theory. Biol Philos 32:5–24.  https://doi.org/10.1007/s10539-016-9542-2 CrossRefGoogle Scholar
  20. Douglas AE (2010) The symbiotic habit. Princeton University Press, OxfordGoogle Scholar
  21. Douglas AE, Werren JH (2016) Holes in the hologenome: why host-microbe symbioses are not holobionts. MBio 7(2):e02099–e02015PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dupré J (2010) The polygenomic organism. Sociol Rev 58(s1):19–30CrossRefGoogle Scholar
  23. Dupré J (2012) Processes of life: essays in the philosophy of biology. Oxford University Press, OxfordCrossRefGoogle Scholar
  24. Dupré J, O’Malley MA (2009) Varieties of living things: life at the intersection of lineage and metabolism. Philosophy & Theory in Biology 1(December).  https://doi.org/10.3998/ptb.6959004.0001.003
  25. Egerton FN (2015) History of ecological sciences, part 52: Symbiosis studies. Bulletin of Ecological Society of America 96(1):80–139CrossRefGoogle Scholar
  26. Frank R (1877) Über die biologischen Verthältnisse des Thallus eineger Krustenflecten. Beitrage zur Biologie der Pflanzen 2:123–200Google Scholar
  27. Frank R (1885) Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Berichte der Deutschen Botanischen Gesellschaf 3:128–145Google Scholar
  28. Frank R (2005) On the nutritional dependence of certain trees on root symbiosis with belowground fungi (an English translation of a.B. Frank’s classic paper of 1885). Mycorrhiza 15:267–275PubMedCrossRefGoogle Scholar
  29. Geddes P (1882) Further researchers on animals containing chlorophyll. Nature 25:303–304CrossRefGoogle Scholar
  30. Gilbert SF, Epel D (2009) Ecological Developmental Biology. Sinauer AssociatesGoogle Scholar
  31. Gilbert SF, Sapp J, Tauber AI (2012) A symbiotic view of life: we have never been individuals. Q Rev Biol 87(4):325–341PubMedCrossRefPubMedCentralGoogle Scholar
  32. Gilbert SF, Rosenberg E, Zilber-Rosenberg I (2017) The holobiont with its hologenome is a level of selection in evolution. In: Gissis SB, Lamm E, Shavit A (eds) Landscapes of collectivity in the life sciences. The MIT Press, London, pp 305–324Google Scholar
  33. Gissis SB, Lamm E, Shavit A (eds) (2017) Landscapes of collectivity in the life sciences. The MIT Press, CambridgeGoogle Scholar
  34. Godfrey-Smith P (2009) Darwinian populations and natural selection. Oxford University Press, OxfordCrossRefGoogle Scholar
  35. Godfrey-Smith P (2015) Reproduction, symbiosis, and the eukaryotic cell. PNAS 112(33):10120–10125PubMedCrossRefGoogle Scholar
  36. Gontier N (2015) Reticulate evolution: Symbiogenesis, lateral gene transfer, hybridization and infectious heredity. Springer, LondonCrossRefGoogle Scholar
  37. Gontier N (2016a) Symbiosis. In: Kliman RM (ed) The Encyclopaedia of evolutionary biology, vol 4. Academic Press, Oxford, pp 272–281CrossRefGoogle Scholar
  38. Gontier N (2016b) Symbiogenesis. In: Kliman RM (ed) The Encyclopaedia of evolutionary biology, vol 4. Academic Press, Oxford, pp 261–271CrossRefGoogle Scholar
  39. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O et al (2014) Human genetics shapes the gut microbiome. Cell 159:789–799PubMedPubMedCentralCrossRefGoogle Scholar
  40. Goodrich JK, Davenport ER, Beaumont M, Clark AG, Ley RE (2017) The relationship between the human genome and microbiome comes into view. Annu Rev Genet 51:413–433PubMedPubMedCentralCrossRefGoogle Scholar
  41. Griesemer J (2016) Reproduction in complex life cycles: a developmental reaction norms perspective. Philos Sci 83:803–815CrossRefGoogle Scholar
  42. Griesemer J (2017) Landscapes of developmental collectivity. In: Gissis SB, Lamm E, Shavit A (eds) Landscapes of collectivity in the life sciences. The MIT Press, London, pp 25–48Google Scholar
  43. Guerrero R, Margulis L, Berlanga M (2013) Symbiogenesis: the holobiont as a unit of evolution. Int Microbiol 16:133–143PubMedGoogle Scholar
  44. Hester ER, Barott KL, Nulton J, Vermeij MJA, Rohwer FL (2016) Stable and sporadic symbiotic communities of coral and algal holobionts. The ISME Journal 10:1157–1169PubMedCrossRefGoogle Scholar
  45. Honegger R (2000) Simon Schwendener (1829–1919) and the dual hypothesis of lichens. Bryologist 103(2):307–313. https://doi.org/10.1639/0007-2745(2000)103[0307:SSATDH]2.0.CO;2Google Scholar
  46. Hull DL (1980) Individuality and selection. Annu Rev Ecol Syst 11:311–332.  https://doi.org/10.1146/annurev.es.11.110180.001523 CrossRefGoogle Scholar
  47. Hurst GDD (2017) Extended genomes: symbiosis and evolution. Interface Focus 7:20170001.  https://doi.org/10.1098/rsfs.2017.0001 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Huttenhower C, Gevers D, Knight R, Creas HH et al (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214CrossRefGoogle Scholar
  49. Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329:212–215PubMedCrossRefGoogle Scholar
  50. Khakhina LN (1992) Concepts of Symbiogenesis: a historical and critical study of the research of Russian botanists. Yale University Press, New HavenGoogle Scholar
  51. Kozo-Polyanski M (1924 [2010]) Symbiogenesis. A new principle in evolution. Edited by V Fett & L Margulis. Cambridge, Harvard University PressGoogle Scholar
  52. Kropoptkin P (1902) Mutual aid. A factor of evolution. William Heinemann, LondonGoogle Scholar
  53. Lamm E (2017) Cultural group selection and Holobiont evolution: a comparison of structures of evolution. In: Gissis SB, Lamm E, Shavit A (eds) Landscapes of collectivity in the life sciences. The MIT Press, London, pp 369–384Google Scholar
  54. Lemanceau P, Blouin M, Muller D, Moënne-Loccoz Y (2017) Let the core microbiota be functional. TRENDS in Plant Science 22 (7): 583–595Google Scholar
  55. Lewontin RC (1970) The units of selection. Annu Rev Ecol Syst 1:1–18CrossRefGoogle Scholar
  56. Lidgard S, Nyhart LK (2017) The work of biological individuality. Concepts and contexts. In: Lidgard S, Nyharts LK (eds) Biological individuality. Integrating scientific, philosophical and historical perspectives. The University of Chicago Press, London, pp 17–62Google Scholar
  57. Lipnicki LL (2015) The role of symbiosis in the transmission of some eukaryotes from aquatic to terrestrial environments. Symbiosis 65:39–53CrossRefGoogle Scholar
  58. Lloyd E (2017a) Units and Levels of selection. In EN Zalta (ed.) Stanford Encyclopaedia of Philosophy. https://plato.stanford.edu/entries/selection-units/
  59. Lloyd E (2017b) Holobionts as units of selection: Holobionts as interactors, reproducers, and manifestors of adaptation. In: Gissis SB, Lamm E, Shavit A (eds) Landscapes of collectivity in the life sciences. The MIT Press, London, pp 351–367Google Scholar
  60. Lloyd E (2017c) A glimpse of philosophy of biology and collectivities today. In: Gissis SB, Lamm E, Shavit A (eds) Landscapes of collectivity in the life sciences. The MIT Press, London, pp 291–301Google Scholar
  61. Margulis L (1970) The origin of eukaryotic cells. Yale University PressGoogle Scholar
  62. Margulis L (1990) Words as battle cries – symbiogenesis and the new field of endocytobiology. Bio Sci 40(9):673–677Google Scholar
  63. Margulis L (1991) Symbiogenesis and symbioticism. In: Margulis L, Fester R (eds) Symbiosis as a source of evolutionary innovation. The MIT Press, Cambridge, pp 1–14Google Scholar
  64. Margulis L (1993) Symbiosis in cell evolution: microbial communities in the Archean and Proterozoic eons. WH Freeman and Co., New YorkGoogle Scholar
  65. Margulis L (1998) Symbiotic planet. A new look at evolution. Basic Books, New YorkGoogle Scholar
  66. Margulis L (2010) Symbiogenesis. A new principle in evolution. Paleontol J 44(12):1525–1539CrossRefGoogle Scholar
  67. Margulis L, Fester R (eds) (1991) Symbiosis as a source of evolutionary innovation. The MIT Press, CambridgeGoogle Scholar
  68. Margulis L, Sagan D (2002) Acquiring genomes. A theory of the origin of species. Basic Books, New YorkGoogle Scholar
  69. Martin W, Kowallik K (1999) Annotated English translation of Mereschkowsky’s 1905 paper “Über Natur und Ursprung der Chromatophoren im Pflanzanreiche”. Eur J Phycol 34(3):287–295Google Scholar
  70. Martin BD, Schwab E (2012) Symbiosis: “living together” in chaos. Studies in the History of Biology 4(4):7–25Google Scholar
  71. Martin BD, Schwab E (2013) Current usage of symbiosis and associated terminology. International Journal of Biology 5:32–45Google Scholar
  72. Maynard-Smith J (1987) Evolutionary progress and levels of selection. In: Dupré J (ed) The latest on the best: essays on evolution and optimality. MIT Press, Cambridge, pp 119–131Google Scholar
  73. Maynard-Smith J (1991) A Darwinian view of symbiosis. In: Margulis L, Fester R (eds) Symbiosis as a source of evolutionary innovation. The MIT Press, Cambridge, pp 26–39Google Scholar
  74. McFall-Ngai M (2015) Giving microbestheir due – animal life in amicrobially dominant world. J Exp Biol 218:1968–1973PubMedCrossRefGoogle Scholar
  75. McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Loso T, Douglas AE, Dubilier N, Eberl G et al (2013) Animals in the bacterial world, a new imperative for the life sciences. PNAS 110(9):3229–3236PubMedCrossRefGoogle Scholar
  76. Merezhkowsky C (1905) Über Natur und Ursprung der Chromatophoren imPflanzanreiche. Biologisches Centralblatt 25:593–604Google Scholar
  77. Merezhkowsky C (1910) Theorie der zwei Plasmaarten als Grundlage der Symbiogenesis, einer neuen Lehre von der Entstehung der Organismen. Biologisches Centralblatt 30:278–303Google Scholar
  78. Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV et al (2016) Cospeciation of gut microbiota with hominids. Science 353:380–382PubMedPubMedCentralCrossRefGoogle Scholar
  79. Moran N, Sloan DB (2015) The Hologenome concept: helpful or hollow? PLoSBiol 13(12):e1002311CrossRefGoogle Scholar
  80. O’Malley MA (2017) From endosymbiosis to holobionts: evaluating a conceptual legacy. J Theor Biol 434:34–41.  https://doi.org/10.1016/j.jtbi.2017.03.008 PubMedCrossRefGoogle Scholar
  81. O’Malley MA, Dupré J (2007) Size doesn’t matter: towards a more inclusive philosophy of biology. Biol Philos 22:155–191CrossRefGoogle Scholar
  82. Ochman H, Worobey M, Kuo C-H, Ndjango N-BN, Peeters M et al (2010) Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol 8(11):e10000546CrossRefGoogle Scholar
  83. Okasha S (2006) Evolution and the levels of selection. Oxford University Press, OxfordCrossRefGoogle Scholar
  84. Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263PubMedCrossRefGoogle Scholar
  85. O'Malley MA (2014) Philosophy of microbiology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  86. Oulhen N, Schulz BJ, Carrier TJ (2016) English translation of Heinrich Anton de Bary’s 1878 speech, ‘die Erscheinung der Symbiose’(‘De la symbiose’). Symbiosis 69:131–139.  https://doi.org/10.1007/s13199-016-0409-8 CrossRefGoogle Scholar
  87. Paracer S, Ahmadjian V (2000) Symbiosis: an introduction to biological associations. Oxford University Press, OxfordGoogle Scholar
  88. Peacock KA (2011) Symbiosis in ecology and evolution. In: Gabbay DM, Thagard P, Woods J (eds) Handbook of the philosophy of science: philosophy of ecology. North Holland, San Diego, pp 219–250CrossRefGoogle Scholar
  89. Portier P (1918) Les Symbiotes. Masson, ParisGoogle Scholar
  90. Pound R (1893) Symbiosis and mutualism. Am Nat 27(318):509–520CrossRefGoogle Scholar
  91. Pradeu T (2016a) The many faces of biological individuality. Biol Philos 31:761–773CrossRefGoogle Scholar
  92. Pradeu T (2016b) Organisms or biological individuals? Combining physiological and evolutionary individuality. Biol Philos 31:797–817CrossRefGoogle Scholar
  93. Queller DC, Strassmann JE (2009) Beyond society: the evolution of organismality. Philos Trans R Soc B 364:3143–3155CrossRefGoogle Scholar
  94. Queller DC, Strassmann JE (2016) Problems of multispecies organisms: endosymbionts to holobionts. Biol Philos 31:855–873CrossRefGoogle Scholar
  95. Relman DA (2012) Microbiology: learning about who we are. Nature 486:194–195PubMedCrossRefGoogle Scholar
  96. Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073PubMedCrossRefGoogle Scholar
  97. Rosas-Pérez T, Vera-Ponce de León A, Ramírez-Puebla ST, Rincón-Rosales R, Martínez-Romer J, Dunn MF, Kondorosi E & Martínez-Romero E (2017) The Symbiome of Llaveia Cochineals (Hemiptera: Coccoidea: Monophlebidae) Includes a Gammaproteobacterial Cosymbiont Sodalis TME1 and the Known Candidatus Walczuchella monophlebidarum. In VDC Shields (ed.): Insect Physiology and Ecology. DOI:  https://doi.org/10.5772/66442. Available from: https://mts.intechopen.com/books/insect-physiology-and-ecology/the-symbiome-of-llaveia-cochineals-hemiptera-coccoidea-monophlebidae-includes-a-gammaproteobacterial
  98. Rosenberg E, Zilber-Rosenberg I (2014) TheHologenome concept. Springer, LondonGoogle Scholar
  99. Rosenberg E, Zilber-Rosenberg I (2016) Microbes drive evolution of animals and plants: the hologenome concept. MBio 7(2):e01395–e01315PubMedPubMedCentralCrossRefGoogle Scholar
  100. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362PubMedCrossRefGoogle Scholar
  101. Rosenberg E, Sharon G, Atad I, Zilber-Rosenberg I (2010) The evolution of animals and plants via symbiosis with microorganisms. Environ Microbiol Rep 2(4):500–506PubMedCrossRefGoogle Scholar
  102. Roughgarden J, Gilbert SF, Rosenberg E, Zilber-Rosenberg I & Lloyd EA (2017). Holobionts as units of selection and a model of their population dynamics and evolution. Biological Theory Google Scholar
  103. Sagan L (1967) On the origin of mitosing cells. Journal of Theoretical Biology 14: 225–274Google Scholar
  104. Sapp J (1994) Evolution by association. A history of symbiosis. Oxford University Press, New YorkGoogle Scholar
  105. Sapp J (2002) Paul Buchner (1886-1978) and hereditary symbiosis in insects. Int Microbiol 5(3):145–150PubMedCrossRefGoogle Scholar
  106. Sapp J (2003) Genesis: the evolution of biology. Oxford University Press, New YorkCrossRefGoogle Scholar
  107. Sapp J (2004) The dynamics of symbiosis: an historical overview. Can J Bot 82:1046–1056CrossRefGoogle Scholar
  108. Sapp J (2010) Saltational symbiosis. Theory Biosciences 129:125–133CrossRefGoogle Scholar
  109. Sapp J, Carrapiço F, Zolotonosov M (2002) Symbiogenesis. The hidden face of Constantin Merezhkowky. History and Philosophy of the Life Sciences 24(3/4):413–440PubMedCrossRefGoogle Scholar
  110. Schneider A (1897) The phenomena of Symbiosis. Minnesota Botanical Studies 1(9):923–948Google Scholar
  111. Schwendener S (1868) Über die Beziehungen zwischen Algen und Flechtengonidien. Botanische Zeitung [Berlin]: 289–292Google Scholar
  112. Shropshire JD, Bordenstein SR (2016) Speciation by symbiosis: the microbiome and behavior. MBio 7(2):e01785–e01715PubMedPubMedCentralCrossRefGoogle Scholar
  113. Skillings D (2016) Holobionts and the ecology of organisms: multi-species communities or integrated individuals? Bio Philos 31:875–892CrossRefGoogle Scholar
  114. Sommer F, Bäckhed F (2013) The gut microbiota – masters manipulator of host development and physiology. Nat Rev Microbiol 11(4):227–238PubMedCrossRefGoogle Scholar
  115. Spencer H (1899) The principles of biology. D. Appleton & Co., New YorkCrossRefGoogle Scholar
  116. Stahl E (1877) Beiträge zur Entwickelungsgeschichte der Flechten (vols. 1 & 2). Leipzig: A FelixGoogle Scholar
  117. Stencel A (2016) The relativity of Darwinian populations and the ecology of endosymbiosis. BiolPhilos 31:619–637Google Scholar
  118. Taxis TM, Wolff S, Gregg SJ, Minton NO, Zhang C, Dai J, Schnabel RD, Taylor JF, Kerley MS, Pires JC, Lamberson WR, Conant GC (2015) The players may change but the game remains: network analyses of ruminal microbiomes suggest taxonomic differences mask functional similarity. Nucleic Acids Res 43(20):9600–9612PubMedPubMedCentralGoogle Scholar
  119. Theis KR, Dheilly NM, Klassen JL, Brucker RM, Baines JF, Bosch TCG, Cryan JF, Gilbert SF, Goodnight CJ, Lloyd EA, Sapp J, Vandenkoornhuyse P, Zilber-Rosenberg I, Rosenberg E, Bordenstein SR (2016) Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems 1(2):e00028–e00016PubMedPubMedCentralCrossRefGoogle Scholar
  120. Trappe JM (2005) A. B. Frank and mycorrhizae: the challenge to evolutionary and ecologic theory. Mycorrhiza 15(4):277–281PubMedCrossRefGoogle Scholar
  121. Tripp EA, Zhans N, Schneider H, Huang Y, Mueller GM, Hu Z, Häggblom M, Bhattacharya D (2017) Reshaping Darwin’s tree: impact of the symbiome. TRENDS in Ecology and Evolution 32(8):552–555PubMedCrossRefGoogle Scholar
  122. Turpin W, Espín-García O, Xu W, Silverberg MS, Kevans D, Smith MI, Guttman DS, Griffiths A et al (2016) Association of host genome with intestinal microbial composition in a large healthy cohort. Nat Genet 48(11):1413–1417PubMedCrossRefGoogle Scholar
  123. Van Beneden P-J (1876) Animal parasites and messmates. Henry S. King, LondonCrossRefGoogle Scholar
  124. Wallin IE (1927) Symbioticism and the origin of species. Williams & Wilkins Co., BaltimoreGoogle Scholar
  125. Wilkinson DM (2001) At cross purposes. Nature 412:485PubMedCrossRefGoogle Scholar
  126. Wilson RA, Barker M (2013) The biological notion of individual. In EN Zalta (ed.) The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/archives/spr2017/entries/biology-individual/
  127. Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenometheoryof evolution. FEMS Microbiol Rev:723–735Google Scholar
  128. Zook D (2015) Symbiosis: Evolution’s co-author. In: Gontier N (ed) Reticulate Evolution. Springer, London, pp 41–80CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhilosophyUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations