Advertisement

Symbiosis

, Volume 76, Issue 1, pp 1–12 | Cite as

Ectomycorrhizas of two species of Tuber (clade Puberulum) in the Mexican subtropical cloud forest

  • Antero Ramos
  • Edith Garay-Serrano
  • Enrique César
  • Leticia Montoya
  • Víctor M. Bandala
Article
  • 575 Downloads

Abstract

Tuber species are hypogeous mycorrhizal symbionts distributed almost worldwide and associated with several tree families. In this study, we recorded the occurrence of two Tuber species (clade Puberulum) in the Acatlán Volcano (Veracruz, Eastern Mexico). They were detected by the means of the internal transcribed spacer (ITS) of nuclear ribosomal DNA sequences obtained from ectomycorrhizal samples collected at the site. The Tuber ectomycorrhizas were related symbiotically with Alnus acuminata and Fagus grandifolia var. mexicana. This is the first report of Tuber associated with these trees. The anatomical and morphological characterization of the ectomycorrhizae are presented along with illustrations.

Keywords

Ascomycota Mycorrhizal interactions Hypogeous fungi Cryptic species Endangered tree species 

Notes

Acknowledgements

We appreciate the assistance in the field and in the laboratory by Biols. D. Ramos and J.C. Corona (both at Instituto de Ecología, A.C.). We recognize the support given by CONACYT (CB 169172) to study the EcM fungi associated with Fagus grandifolia var. mexicana in the montane cloud forest of Central Veracruz and by the postdoctoral grant to A. Ramos. We acknowledge the support given by CONACYT (225382) to the Laboratorio de Presecuenciación, Red Biodiversidad y Sistemática, INECOL. M.Sc. Bertha Pérez at this lab aid in some molecular procedures. We are thankful to the anonymous reviewers and the editor, Professor David Richardson, for their helpful suggestions on the manuscript.

Compliance with ethical standards

Disclosure

All the experiments undertaken in this study comply with the current laws of the country where they were performed.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13199_2017_535_MOESM1_ESM.xlsx (37 kb)
ESM 1 (XLSX 36 kb)

References

  1. Agerer R (1987–2002) Colour atlas of Ectomycorrhizae, Vol.1-12 del. Einhorn-Verlag + Druck GmbH, MunichGoogle Scholar
  2. Agerer R (1991) Characterization of Ectomycorrhiza. Methods in. Microbiology 23:25–73Google Scholar
  3. Agerer R (1995) Anatomical characteristics of identified ectomycorrhizas: an attempt towards a natural classification. In: Varma A, Hock B (eds) Mycorrhiza. Springer-Verlag Berlin Heidelberg, Berlin, pp 685–734.  https://doi.org/10.1007/978-3-662-08897-5_29 CrossRefGoogle Scholar
  4. Agerer R, Rambold G (2004–2017) DEEMY - an information system for characterization and determination of Ectomycorrhizae. München. Available from: www.deemy.de. Accessed 20 Jan 2017
  5. Argüelles-Moyao A, Garibay-Orijel R, Márquez-Valdelamar LM, Arellano-Torres E (2017) Clavulina-Membranomyces is the most important lineage within the highly diverse ectomycorrhizal fungal community of Abies religiosa. Mycorrhiza 27(1):53–65.  https://doi.org/10.1007/s00572-016-0724-1 CrossRefPubMedGoogle Scholar
  6. Bandala VM, Montoya L, Ramos A (2016) Two new Lactarius species from a subtropical cloud forest in eastern Mexico. Mycologia 108(5):967–980.  https://doi.org/10.3852/15-310 CrossRefPubMedGoogle Scholar
  7. Becerra A, Zak MR, Horton TR, Micolini J (2005) Ectomycorrhizal and arbuscular mycorrhizal colonization of Alnus acuminata from Calilegua National Park (Argentina). Mycorrhiza 15(7):525–531.  https://doi.org/10.1007/s00572-005-0360-7 CrossRefPubMedGoogle Scholar
  8. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2017) GenBank. Nucleic Acids Res 45(Database issue):D37–D42.  https://doi.org/10.1093/nar/gkw1070 CrossRefPubMedGoogle Scholar
  9. Berch SM, Bonito G (2016) Truffle diversity (Tuber, Tuberaceae) in British Columbia. Mycorrhiza 26(6):587–594.  https://doi.org/10.1007/s00572-016-0695-2 CrossRefPubMedGoogle Scholar
  10. Berndt R, Kottke I, Oberwinkle F (1990) Ascomycete mycorrhizas from pot-grown silver-fir seedlings (Abies alba mill.) New Phytol 115(3):471–482.  https://doi.org/10.1111/j.1469-8137.1990.tb00473.x CrossRefGoogle Scholar
  11. Blaschke H (1987) Vorkommen und Charakterisierung der Ektomykorrhizaassoziation Tuber puberulum mit Picea abies. Zeitschrift fur Mykologie 53:283–288Google Scholar
  12. Bogar L, Kennedy P (2013) New wrinkles in an old paradigm: neighborhood effects can modify the structure and specificity of Alnus-associated ectomycorrhizal fungal communities. FEMS Microbiol Ecol 83(3):767–777.  https://doi.org/10.1111/1574-6941.12032 CrossRefPubMedGoogle Scholar
  13. Bonito GM, Smith ME (2016) General systematic position of the truffles: evolutionary theories. In: Zambonelli a, Iotti M, Murat, C (eds) True Truffle (Tuber spp.) in the World, Soil Biology 47, springer international publishing, Switzerland, pp 3-18Google Scholar
  14. Bonito GM, Gryganskyi AP, Trappe JM, Vilgalys R (2010a) A global meta-analysis of Tuber ITS rDNA sequences: species diversity, host associations and long-distance dispersal. Mol Ecol 19(22):4994–5008.  https://doi.org/10.1111/j.1365-294X.2010.04855.x CrossRefPubMedGoogle Scholar
  15. Bonito GM, Trappe JM, Rawlinson P, Vilgalys R (2010b) Improved resolution of major clades within Tuber and taxonomy of species within the Tuber gibbosum complex. Mycologia 102(5):1042–1057.  https://doi.org/10.3852/09-213 CrossRefPubMedGoogle Scholar
  16. Bonito GM, Brenneman T, Vilgalys R (2011a) Ectomycorrhizal fungal diversity in orchards of cultivated pecan (Carya illinoinensis; Juglandaceae). Mycorrhiza 21(7):601–612.  https://doi.org/10.1007/s00572-011-0368-0 CrossRefPubMedGoogle Scholar
  17. Bonito GM, Trappe J, Donovan S, Vilgalys R (2011b) The Asian black truffle Tuber indicum can form ectomycorrhizas with north American host plants and complete its life cycle in non-native soils. Fungal Ecol 4(1):83–93.  https://doi.org/10.1016/j.funeco.2010.08.003 CrossRefGoogle Scholar
  18. Bonito GM, Smith ME, Nowak M, Healy RA, Guevara G, Cazares E, Kinoshita A, Nouhra ER, Dominguez LS, Tedersoo L, Murat C, Wang Y, Moreno BA, Pfister DH, Nara K, Zambonelli A, Trappe JM, Vilgalys R (2013) Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified southern hemisphere sister lineage. PLoS One 8(1):e52765.  https://doi.org/10.1371/journal.pone.0052765 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bulman S, Visnovsky S, Hall I, Guerin-Laguette A, Wang Y (2010) Molecular and morphological identification of truffle-producing Tuber species in New Zealand. Mycol Prog 9(2):205–214.  https://doi.org/10.1007/s11557-009-0626-0 CrossRefGoogle Scholar
  20. Cázares E, García J, Castillo J, Trappe JM (1992) Hypogeous fungi from northern Mexico. Mycologia 84(3):341–359.  https://doi.org/10.2307/3760186 CrossRefGoogle Scholar
  21. César CE (2013) Reconocimiento de hongos ectomicorrizógenos de Alnus acuminata Kunth en el Volcán de Acatlán, Veracruz. Dissertation, Instituto de Ecología A.CGoogle Scholar
  22. Chevalier G (2014) The European Desert truffles. In: Kagan-Zur V, Roth-Bejerano N, Sitrit Y, Morte A (eds) Desert Truffles. Springer-Verlag Berlin Heidelberg, New York, pp 121–140.  https://doi.org/10.1007/978-3-642-40096-4_9 CrossRefGoogle Scholar
  23. Craig AJ, Woods S, Hoeksema JD (2016) Influences of host plant identity and disturbance on spatial structure and community composition of ectomycorrhizal fungi in a northern Mississippi uplands ecosystem. Fungal Ecol 24:7–14.  https://doi.org/10.1016/j.funeco.2016.08.007 CrossRefGoogle Scholar
  24. Cui L, Mu L (2016) Ectomycorrhizal communities associated with Tilia amurensis trees in natural versus urban forests of Heilongjiang in northeast China. J For Res 27(2):401–406.  https://doi.org/10.1007/s11676-015-0158-1 CrossRefGoogle Scholar
  25. De Roman M, Claveria V, De Miguel AM (2005) A revision of the descriptions of ectomycorrhizas published since 1961. Mycol Res 109(10):1063–1104.  https://doi.org/10.1017/S0953756205003564 CrossRefPubMedGoogle Scholar
  26. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Farahat E, Lechowicz M (2013) Functional ecology of growth in seedlings versus root sprouts of Fagus grandifolia Ehrh. Trees 27(1):337–340.  https://doi.org/10.1007/s00468-012-0781-9 CrossRefGoogle Scholar
  28. Fischer CR, Suz LM, Martin MP, Colinas C (2004) Tuber brumale Vitt. + Quercus ilex L. Descr Ectomyc 7(8):135–141Google Scholar
  29. Furlow JJ (1979) The systematics of the American species of Alnus (Betulaceae). Rhodora 81:1–121Google Scholar
  30. Garay-Serrano E, Bandala VM, Montoya L (2012) Morphological and molecular identification of the ectomycorrhizal association of Lactarius fumosibrunneus and Fagus grandifolia Var. mexicana trees in eastern Mexico. Mycorrhiza 22(8):583–588.  https://doi.org/10.1007/s00572-012-0435-1 CrossRefPubMedGoogle Scholar
  31. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Mol Ecol 2(2):113–118.  https://doi.org/10.1111/j.1365-294X.1993.tb00005.x CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gardes M, Bruns TD (1996) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above-and below-ground views. Can J Bot 74(10):1572–1583.  https://doi.org/10.1139/b96-190 CrossRefGoogle Scholar
  33. Garibay-Orijel R, Morales-Marañon E, Domínguez-Gutiérrez M, Flores-García A (2013) Caracterización morfológica y genética de las ectomicorrizas formadas entre Pinus montezumae y los hongos presentes en los bancos de esporas en la Faja Volcánica Transmexicana. Rev Mex Biodivers 84(1):153–169.  https://doi.org/10.7550/rmb.29839 CrossRefGoogle Scholar
  34. Garza F, García J, Castillo J (1985) Macromicetos asociados al bosque de Quercus rysophylla en algunas localidades del centro del estado de Nuevo León. Rev Mex Micol 1:423–428Google Scholar
  35. Glassman SI, Peay KG, Talbot JM, Smith DP, Chung JA, Taylor JW, Vilgalys R, Bruns TD (2015) A continental view of pine-associated ectomycorrhizal fungal spore banks: a quiescent functional guild with a strong biogeographic pattern. New Phytol 205(4):1619–1631.  https://doi.org/10.1111/nph.13240 CrossRefPubMedGoogle Scholar
  36. Gregori G, Tocci A (1985) Possibilità di produzione di piantine di Alnus cordata Loisel. Micorrizate con Tuber melanosporum Vitt. e Tuber aestivum Vitt. L’Italia Forestale e. Montana 40:262–270Google Scholar
  37. Guevara G, Bonito G, Cázares E, Rodríguez J, Vilgalys R, Trapp J (2008) Tuber regimontanum, new species of truffle from Mexico. Rev Mex Micol 26:17–20Google Scholar
  38. Guevara G, Bonito G, Cázares E (2013a) Revisión del género Tuber (Tuberaceae: Pezizales) de Mexico. Rev Mex Biodivers 84:S39–S49.  https://doi.org/10.7550/rmb.31981 CrossRefGoogle Scholar
  39. Guevara G, Bonito G, Trappe JM, Cázares E, Williams G, Healy RA, Schadt C, Vilgalys R (2013b) New north American truffles (Tuber spp.) and their ectomycorrhizal associations. Mycologia 105(1):194–209.  https://doi.org/10.3852/12-087 CrossRefPubMedGoogle Scholar
  40. Guevara G, Bonito G, Cázares E, Healy R, Vilgalys R, Trappe J (2015) Novel Tuber spp. (Tuberaceae, Pezizales) in the Puberulum group from Mexico. Ascomyceteorg 7:367–374Google Scholar
  41. Halász K, Bratek Z, Szegő D, Rudnóy S, Rácz I, Lásztity D, Trappe JM (2005) Tests of species concepts of the small, white, European group of Tuber spp. based on morphology and rDNA ITS sequences with special reference to Tuber rapaeodorum. Mycol Prog 4(4):281–290.  https://doi.org/10.1007/s11557-006-0132-6 CrossRefGoogle Scholar
  42. Healy RA, Zurier H, Bonito G, Smith ME, Pfister DH (2016) Mycorrhizal detection of native and non-native truffles in a historic arboretum and the discovery of a new north American species, Tuber arnoldianum sp. nov. Mycorrhiza 26(7):781–792.  https://doi.org/10.1007/s00572-016-0713-4 CrossRefPubMedGoogle Scholar
  43. Hunt GA, Trappe JM (1987) Seasonal hypogeous sporocarp production in a western Oregon Douglas-fir stand. Can J Bot 65(3):438–445.  https://doi.org/10.1139/b87-053 CrossRefGoogle Scholar
  44. Ingleby K, Mason PA, Last FT, Fleming LV (1990) Identification of Ectomycorrhizas. First published. HMSO: ITE research publication no. 5, LondonGoogle Scholar
  45. Jeandroz S, Murat C, Wang Y, Bonfante P, Tacon FL (2008) Molecular phylogeny and historical biogeography of the genus Tuber, the ‘true truffles’. J Biogeogr 35(5):815–829.  https://doi.org/10.1111/j.1365-2699.2007.01851.x CrossRefGoogle Scholar
  46. Kennedy P, Garibay-Orijel R, Higgins L, Angeles-Arguiz R (2011) Ectomycorrhizal fungi in Mexican Alnus forests support the host co-migration hypothesis and continental-scale patterns in phylogeography. Mycorrhiza 21(6):559–568.  https://doi.org/10.1007/s00572-011-0366-2 CrossRefPubMedGoogle Scholar
  47. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi. 10th ed. CABI International, UKGoogle Scholar
  48. Læssøe T, Hansen K (2007) Truffle trouble: what happened to the Tuberales? Mycol Res 111(9):1075–1099.  https://doi.org/10.1016/j.mycres.2007.08.004 CrossRefPubMedGoogle Scholar
  49. Lancellotti E, Iotti M, Zambonelli A, Franceschini A (2016) The Puberulum group Sensu Lato (whitish truffles). In: Zambonelli A, Iotti M, Murat C (eds) True truffle (Tuber spp.) in the world, soil biology 47. Springer international publishing, Switzerland, pp 105–124.  https://doi.org/10.1007/978-3-319-31436-5_7 CrossRefGoogle Scholar
  50. Le Tacon F (2016) Influence of climate on natural distribution of Tuber species and truffle production. In: Zambonelli A, Iotti M, Murat C (eds) True truffle (Tuber spp.) in the world, soil biology 47. Springer international publishing, Switzerland, pp 153–166.  https://doi.org/10.1007/978-3-319-31436-5_10 CrossRefGoogle Scholar
  51. Luoma DL, Frenkel RE, Trappe JM (1991) Fruiting of hypogeous fungi in Oregon Douglas-fir forests: seasonal and habitat variation. Mycologia 83(3):335–353.  https://doi.org/10.2307/3759994 CrossRefGoogle Scholar
  52. McBurney KG, Cline ET, Bakker JD, Ettl GJ (2017) Ectomycorrhizal community composition and structure of a mature red alder (Alnus rubra) stand. Fungal Ecol 27:47–58.  https://doi.org/10.1016/j.funeco.2017.02.006 CrossRefGoogle Scholar
  53. Montoya L, Bandala VM (2011) A new Phylloporus from two relict Fagus grandifolia Var. mexicana populations in a montane cloud forest. Mycotaxon 117(1):9–18.  https://doi.org/10.5248/117.9 CrossRefGoogle Scholar
  54. Montoya L, Bandala VM, Garay E (2014) Two new species of Lactarius associated with Alnus acuminata subsp. arguta in Mexico based on morphological and molecular evidence. Mycologia 106(5):949–962.  https://doi.org/10.3852/14-006 CrossRefPubMedGoogle Scholar
  55. Montoya L, Bandala VM, Garay E (2015) The ectomycorrhizas of Lactarius cuspidoaurantiacus and Lactarius herrerae associated with Alnus acuminata in Central Mexico. Mycorrhiza 25(6):457–467.  https://doi.org/10.1007/s00572-015-0625-8 CrossRefPubMedGoogle Scholar
  56. Nee M (1981) Flora de Veracruz, Betulaceae. Mexico: INIREB, 20 ppGoogle Scholar
  57. Põlme S, Bahram M, Yamanaka T, Nara K, Cheng Y, Grebenc T, Kraigher H, Toivonen M, Wang PH, Matsuda Y, Naadel T, Kennedy PG, Tedersoo L (2013) Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. New Phytol 198(4):1239–1249.  https://doi.org/10.1111/nph.12170 CrossRefPubMedGoogle Scholar
  58. Pritsch K, Becerra A, Põlme S, Tedersoo L, Schloter M, Agerer R (2010) Description and identification of Alnus acuminata ectomycorrhizae from Argentinean alder stands. Mycologia 102(6):1263–1273.  https://doi.org/10.3852/09-311 CrossRefPubMedGoogle Scholar
  59. Rambaut A. FigTree v1.4.3 (2016) Institute of Evolutionary Biology, Univ of Edinburgh Available from: http:// tree.bio.ed.ac.uk/software/figtree. [accessed 31.01.17]
  60. Reverchon F, Ortega-Larrocea MP, Pérez-Moreno J (2015) Structure and diversity of ectomycorrhizal resistant propagules in Pinus montezumae neotropical forests and implications for seedling establishment. Mycoscience 56(2):214–223.  https://doi.org/10.1016/j.myc.2014.06.005 CrossRefGoogle Scholar
  61. Rochet J, Moreau PA, Manzi S, Gardes M (2011) Comparative phylogenies and host specializationin the alder ectomycorrhizal fungi Alnicola, Alpova and Lactarius (Basidiomycota) in Europe. BMC Evol Biol 11(1):40.  https://doi.org/10.1186/1471-2148-11-40 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rodríguez-Ramírez E, Sánchez-González A, Ángeles-Pérez G (2013) Current distribution and coverage of Mexican beech forests Fagus grandifolia subsp. mexicana in Mexico. Endanger Species Res 20(3):205–216.  https://doi.org/10.3354/esr00498 CrossRefGoogle Scholar
  63. Rojas-Soto O, Sosa V, Ornelas JF (2012) Forecasting cloud forest in eastern and southern Mexico: conservation insights under future climate change scenarios. Biodivers Conserv 21(10):2671–2690.  https://doi.org/10.1007/s10531-012-0327-x CrossRefGoogle Scholar
  64. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542.  https://doi.org/10.1093/sysbio/sys029 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Rowden A, Robertson A, Allnutt T, Heredia S, Williams-Linera G, Newton A (2004) Conservation genetics of Mexican beech, Fagus grandifolia Var. mexicana. Conserv Genet 5(4):475–484.  https://doi.org/10.1023/B:COGE.0000041028.02423.c0 CrossRefGoogle Scholar
  66. Rzedowski J (1996) Análisis preliminar de la flora vascular de los bosques mesófilos de montaña de Mexico. Acta Bot Mex 35:25–44CrossRefGoogle Scholar
  67. States JS, Gaud WS (1997) Ecology of hypogeous fungi associated with ponderosa pine. I. Patterns of distribution and sporocarp production in some Arizona forests. Mycologia 89(5):712–721.  https://doi.org/10.2307/3761127 CrossRefGoogle Scholar
  68. Stephens RB, Remick TJ, Ducey MJ, Rowe RJ (2017) Drivers of truffle biomass, community composition, and richness among forest types in the northeastern US. Fungal Ecol 29:30–41.  https://doi.org/10.1016/j.funeco.2017.05.004 CrossRefGoogle Scholar
  69. Stobbe U, Egli S, Tegel W, Peter M, Sproll L, Büntgen U (2013) Potential and limitations of Burgundy truffle cultivation. Appl Microbiol Biotechnol 97(12):5215–5224.  https://doi.org/10.1007/s00253-013-4956-0 CrossRefPubMedGoogle Scholar
  70. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729.  https://doi.org/10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Trappe JM, Cazares E (2006) Tuber guzmanii, a new truffle from southern México. Int J Med Mushrooms 8(3):279–282.  https://doi.org/10.1615/IntJMedMushr.v8.i3.90 CrossRefGoogle Scholar
  72. Trappe JM, Guzmán G (1971) Notes on some hypogeous fungi from Mexico. Mycologia 63(2):317–332.  https://doi.org/10.2307/3757764 CrossRefGoogle Scholar
  73. Trappe JM, Jumpponen AM, Cazares E (1996) NATS truffle and truffle-like fungi 5: Tuber lyonii (= T. texense), with a key to the spiny-spored Tuber species groups. Mycotaxon 60:365–372Google Scholar
  74. Trappe JM, Molina R, Luoma DL, Cázares E, Pilz D Smith JE, Castellano MA, Miller SL, Trappe MJ (2009) Diversity, ecology, and conservation of truffle fungi in forests of the Pacific northwest. Gen. Tech. Rep. PNW-GTR-772. U.S. Department of Agriculture, Forest Service, Pacific northwest Research Station, PortlandGoogle Scholar
  75. Urban A, Neuner-Plattner I, Krisai-Greilhuber I, Haselwandter K (2004) Molecular studies on terricolous microfungi reveal novel anamorphs of two Tuber species. Mycol Res 108(7):749–758.  https://doi.org/10.1017/S0953756204000553 CrossRefPubMedGoogle Scholar
  76. Ursic M, Peterson RL (1997) Morphological and anatomical characterization of ectomycorrhizas and ectendomycorrhizas on Pinus strobus seedlings in a southern Ontario nursery. Can J Bot 75(12):2057–2072.  https://doi.org/10.1139/b97-917 CrossRefGoogle Scholar
  77. Vanden-Heuvel B (2011) Alnus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer-Verlag Berlin Heidelberg, Berlin, pp 1–14.  https://doi.org/10.1007/978-3-642-21250-5_1 CrossRefGoogle Scholar
  78. Wan SP, FQ Y, Tang L, Wang R, Wang Y, Liu PG, Wang XH, Zheng Y (2016a) Ectomycorrhizae of Tuber huidongense and T. liyuanum with Castanea mollissima and Pinus armandii. Mycorrhiza 26(3):249–256.  https://doi.org/10.1007/s00572-015-0663-2 CrossRefPubMedGoogle Scholar
  79. Wan SP, Wang XH, Zheng Y, FQ Y (2016b) Tuber shidianense and T. calosporum, two new truffle species from southwest China. Mycoscience 57(6):393–399.  https://doi.org/10.1016/j.myc.2016.06.007 CrossRefGoogle Scholar
  80. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
  81. Williams-Linera G, Devall MS, Álvarez-Aquino C (2000) A relict population of Fagus grandifolia Var. mexicana at the Acatlán volcano, Mexico: structure, litterfall, phenology and dendroecology. J Biogeogr 27(6):1297–1309.  https://doi.org/10.1046/j.1365-2699.2000.00500.x CrossRefGoogle Scholar
  82. Zambonelli A, Branzanti MB (1990) Mycorrhizal synthesis between Tuber albidum with Castanea sativa, Quercus suber and Alnus cordata. Agric Ecosyst Environ 28(1-4):563–567.  https://doi.org/10.1016/0167-8809(90)90099-Y CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Antero Ramos
    • 1
  • Edith Garay-Serrano
    • 1
  • Enrique César
    • 1
  • Leticia Montoya
    • 1
  • Víctor M. Bandala
    • 1
  1. 1.Red Biodiversidad y SistemáticaInstituto de EcologíaVeracruzMexico

Personalised recommendations