, Volume 74, Issue 3, pp 225–236 | Cite as

The nature of the immune response in novel Wolbachia-host associations

  • Rosemarie I. Herbert
  • Elizabeth A. McGrawEmail author


Wolbachia is an obligate, intracellular symbiont that is commonly found in insects and causes a diverse array of reproductive manipulations. Normally transmitted vertically, the occasional horizontal host species jump can be seen in the lack of concordance between Wolbachia and host phylogenies. In the laboratory, the symbiont can be artificially introduced into novel hosts and selected to produce persistent infections. In the case of the vector of dengue virus, Aedes aegypti, the symbiont was successfully introduced with the aim of developing the bacterium for biocontrol. In this insect and others, Wolbachia limits co-infection with pathogens including viruses, bacteria and parasites. Here we have novelly infected cell lines derived from diverse insect species with Wolbachia in an attempt to determine if there are commonalities in the early host response to the symbiont. We then monitored the expression of genes in the antibacterial Toll and Imd pathways in the first several passages. We focused on immunity gene expression as it underpins the bulk of the transcriptional response to Wolbachia and because it may play a role in the pathogen blocking effect. We found that successful cell infections of Wolbachia were difficult to achieve and often required repeated rounds of reinfection. We saw significant variation in the nature of the transcriptional changes across cell lines and no attenuation of gene expression changes in the first several passages. These results suggest that insect species are likely to exhibit distinct responses to Wolbachia infection. They also reveal that any evolution of an attenuated transcriptional response, as predicted by long-standing Wolbachia x host associations, is not likely to occur rapidly. The findings will have implications for biocontrol programs that rely on the novel infection of naïve hosts.


Evolution Innate immunity Wolbachia Dengue Endosymbiont Insects 



The authors wish to thank Yi Dong for advice on cell infection approaches. We thank Hilaria Amuzu, Bradley Borges and Emily Kerton for assistance with RNA extraction and qPCR procedures.


This work was supported by an Australian Research Council Project Grant (DP1601000588) to EM.

Compliance with ethical standards

Conflict of interest

RIH and EM declare that they have no conflict of interest.

Supplementary material

13199_2017_503_MOESM1_ESM.xlsx (36 kb)
Online Resource 1 List of primer sequences used for qPCR (XLSX 35 kb)


  1. Ahmed MZ et al (2015) The intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission. PLoS Pathog 10:e1004672. CrossRefPubMedGoogle Scholar
  2. Axford JK, Ross PA, Yeap HL, Callahan AG, Hoffmann AA (2016) Fitness of wAlbB Wolbachia infection in Aedes aegypti: parameter estimates in an outcrossed background and potential for population invasion. Am J Trop Med Hyg 94:507–516. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bian G, Xu Y, Lu P, Xie Y, Xi Z (2010) The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog 6:e1000833. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bian G et al (2013a) Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science 340:748–751. CrossRefPubMedGoogle Scholar
  5. Bian G, Zhou G, Lu P, Xi Z (2013b) Replacing a native Wolbachia with a novel strain results in an increase in endosymbiont load and resistance to dengue virus in a mosquito vector. PLoS Negl Trop Dis 7:e2250. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Blagrove MS, Arias-Goeta C, Failloux AB, Sinkins SP (2012) Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. Proc Natl Acad Sci U S A 109:255–260. CrossRefPubMedGoogle Scholar
  7. Bonferroni CE (1935) Il calcolo delle assicurazioni su gruppi di teste. Studi in Onore del Professore Salvatore Ortu Carboni. Rome, ItalyGoogle Scholar
  8. Bourtzis K, Pettigrew MM, O'Neill SL (2000) Wolbachia neither induces nor suppresses transcripts encoding antimicrobial peptides. Insect Mol Biol 9:635–639CrossRefPubMedGoogle Scholar
  9. Boyle L, O'Neill SL, Robertson HM, Karr TL (1993) Interspecific and intraspecific horizontal transfer of Wolbachia in Drosophila. Science 260:1796–1799CrossRefPubMedGoogle Scholar
  10. Breeuwer JA, Jacobs G (1996) Wolbachia: intracellular manipulators of mite reproduction. Exp Appl Acarol 20:421–434CrossRefPubMedGoogle Scholar
  11. Buchon N, Silverman N, Cherry S (2014) Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology. Nat Rev Immunol 14:796–810. CrossRefPubMedGoogle Scholar
  12. Caragata EP, Rances E, Hedges LM, Gofton AW, Johnson KN, O'Neill SL, McGraw EA (2013) Dietary cholesterol modulates pathogen blocking by Wolbachia. PLoS Pathog 9:e1003459. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Caragata EP, Pais FS, Baton LA, Silva JB, Sorgine MH, Moreira LA (2017) The transcriptome of the mosquito Aedes fluviatilis (Diptera: Culicidae), and transcriptional changes associated with its native Wolbachia infection. BMC Genomics 18:6. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Caspi-Fluger A et al (2012) Horizontal transmission of the insect symbiont Rickettsia is plant-mediated. Proc Biol Sci 279:1791–1796. CrossRefPubMedGoogle Scholar
  15. Cordaux R, Michel-Salzat A, Bouchon D (2001) Wolbachia infection in crustaceans: novel hosts and potential routes for horizontal transmission. J Evol Biol 14:237–243CrossRefGoogle Scholar
  16. Cordaux R et al (2012) Widespread Wolbachia infection in terrestrial isopods and other crustaceans. Zookeys 176:123–131. CrossRefGoogle Scholar
  17. Dedeine F, Bouletreau M, Vavre F (2005) Wolbachia requirement for oogenesis: occurrence within the genus Asobara (hymenoptera, Braconidae) and evidence for intraspecific variation in A. tabida. Heredity (Edinb) 95:394–400. CrossRefGoogle Scholar
  18. Dobson SL, Marsland EJ, Veneti Z, Bourtzis K, O'Neill SL (2002) Characterization of Wolbachia host cell range via the in vitro establishment of infections. Appl Environ Microbiol 68:656–660CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dushay MS, Asling B, Hultmark D (1996) Origins of immunity: relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc Natl Acad Sci U S A 93:10343–10347CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gehrer L, Vorburger C (2012) Parasitoids as vectors of facultative bacterial endosymbionts in aphids. Biol Lett 8:613–615. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hedges LM, Brownlie JC, O'Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322:702CrossRefPubMedGoogle Scholar
  22. Jaenike J, Polak M, Fiskin A, Helou M, Minhas M (2007) Interspecific transmission of endosymbiotic Spiroplasma by mites. Biol Lett 3:23–25CrossRefPubMedGoogle Scholar
  23. Joubert DA et al (2016) Establishment of a Wolbachia superinfection in Aedes aegypti mosquitoes as a potential approach for future resistance management. PLoS Pathog 12:e1005434. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kambris Z, Cook PE, Phuc HK, Sinkins SP (2009) Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science 326:134-136
  25. Kambris Z, Blagborough AM, Pinto SB, Blagrove MS, Godfray HC, Sinden RE, Sinkins SP (2010) Wolbachia stimulates immune gene expression and inhibits plasmodium development in Anopheles gambiae. PLoS Pathog 6:e1001143. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kikuchi Y, Hosokawa T, Fukatsu T (2007) Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol 73:4308–4316. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kremer N, Charif D, Henri H, Gavory F, Wincker P, Mavingui P, Vavre F (2012) Influence of Wolbachia on host gene expression in an obligatory symbiosis. BMC Microbiol 12 Suppl 1:S7
  28. Kuno G (1983) Cultivation of mosquito cell lines in serum-free media and their effects on dengue virus replication. In Vitro 9:707–713CrossRefGoogle Scholar
  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408. CrossRefPubMedGoogle Scholar
  30. Lowenberger C, Bulet P, Charlet M, Hetru C, Hodgeman B, Christensen BM, Hoffmann JA (1995) Insect immunity: isolation of three novel inducible antibacterial defensins from the vector mosquito, Aedes aegypti. Insect Biochem Mol Biol 25:867–873CrossRefPubMedGoogle Scholar
  31. Lu P, Bian G, Pan X, Xi Z (2012) Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells. PLoS Negl Trop Dis 6:e1754. CrossRefPubMedPubMedCentralGoogle Scholar
  32. McGraw EA, Merritt DJ, Droller JN, O'Neill SL (2002) Wolbachia density and virulence attenuation after transfer into a novel host. Proc Natl Acad Sci U S A 99:2918–2923. CrossRefPubMedPubMedCentralGoogle Scholar
  33. McMeniman CJ et al (2008) Host adaptation of a Wolbachia strain after long-term serial passage in mosquito cell lines. Appl Environ Microbiol 74:6963–6969. CrossRefPubMedPubMedCentralGoogle Scholar
  34. McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang YF, O'Neill SL (2009) Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323:141-144
  35. Moran NA, Dunbar HE (2006) Sexual acquisition of beneficial symbionts in aphids. Proc Natl Acad Sci U S A 103:12803–12806. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Moreira LA et al (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell 139:1268–1278. CrossRefPubMedGoogle Scholar
  37. Myllymaki H, Ramet M (2014) JAK/STAT pathway in Drosophila immunity. Scand J Immunol 79:377–385. CrossRefPubMedGoogle Scholar
  38. Oh HW, Kim MG, Shin SW, Bae KS, Ahn YJ, Park HY (2000) Ultrastructural and molecular identification of a Wolbachia endosymbiont in a spider, Nephila clavata. Insect Mol Biol 9:539–543CrossRefPubMedGoogle Scholar
  39. O'Neill SL, Pettigrew MM, Sinkins SP, Braig HR, Andreadis TG, Tesh RB (1997) In vitro cultivation of Wolbachia pipientis in an Aedes albopictus cell line. Insect Mol Biol 6:33–39CrossRefPubMedGoogle Scholar
  40. Osborne SE, Iturbe-Ormaetxe I, Brownlie JC, O'Neill SL, Johnson KN (2012) Antiviral protection and the importance of Wolbachia density and tissue tropism in Drosophila simulans. Appl Environ Microbiol 78:6922–6929. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pan X, Zhou G, Wu J, Bian G, Lu P, Raikhel AS, Xi Z (2012) Wolbachia induces reactive oxygen species (ROS)-dependent activation of the toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A 109:E23–E31. CrossRefPubMedGoogle Scholar
  42. Pannebakker BA, Loppin B, Elemans CP, Humblot L, Vavre F (2007) Parasitic inhibition of cell death facilitates symbiosis. Proc Natl Acad Sci U S A 104:213–215. CrossRefPubMedGoogle Scholar
  43. Peleg J (1968) Growth of arboviruses in primary tissue culture of Aedes aegypti embryos. Am J Trop Med Hyg 17:219–223CrossRefPubMedGoogle Scholar
  44. Pinto SB, Mariconti M, Bazzocchi C, Bandi C, Sinkins SP (2012) Wolbachia surface protein induces innate immune responses in mosquito cells. BMC Microbiol 12 Suppl 1:S11
  45. Pudney M, Marhoul Z, Varma MG, Leake CJ (1972) A continuous mosquito cell line from larvae of Anopheles gambiae. Trans R Soc Trop Med Hyg 66:21–22CrossRefPubMedGoogle Scholar
  46. Rancès E, Ye YH, Woolfit M, McGraw EA, O'Neill SL (2012) The relative importance of innate immune priming in Wolbachia-mediated dengue interference. PLoS Pathog 8:e1002548. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ross PA, Endersby NM, Yeap HL, Hoffmann AA (2014) Larval competition extends developmental time and decreases adult size of wMelPop Wolbachia-infected Aedes aegypti. Am J Trop Med Hyg 91:198–205. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Schneider I (1972) Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol 27:353–365PubMedGoogle Scholar
  49. Sironi M, Bandi C, Sacchi L, Di Sacco B, Damiani G, Genchi C (1995) Molecular evidence for a close relative of the arthropod endosymbiont Wolbachia in a filarial worm. Mol Biochem Parasitol 74:223–227CrossRefPubMedGoogle Scholar
  50. Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6:e2. CrossRefPubMedGoogle Scholar
  51. Terradas G, Joubert DA, McGraw EA (2017) The RNAi pathway plays a small part in Wolbachia-mediated blocking of dengue virus in mosquito cells. Sci Rep 7:43847Google Scholar
  52. Turley AP, Zalucki MP, O'Neill SL, McGraw EA (2013) Transinfected Wolbachia have minimal effects on male reproductive success in Aedes aegypti. Parasit Vectors 6:36. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Vaughn JL, Goodwin RH, Tompkins GJ, McCawley P (1977) The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro 4:213–217CrossRefGoogle Scholar
  54. Voronin D, Tran-Van V, Potier P, Mavingui P (2010) Transinfection and growth discrepancy of Drosophila Wolbachia strain wMel in cell lines of the mosquito Aedes albopictus. J Appl Microbiol 108:2133–2141. PubMedGoogle Scholar
  55. Walker T et al (2011a) A non-virulent Wolbachia infection blocks dengue transmission and rapidly invades Aedes aegypti populations. Nature 476:450–455CrossRefPubMedGoogle Scholar
  56. Walker T et al (2011b) The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476:450–453. CrossRefPubMedGoogle Scholar
  57. Werren JH, Zhang W, Guo LR (1995) Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc Biol Sci 261:55–63. CrossRefPubMedGoogle Scholar
  58. Wong ZS, Hedges LM, Brownlie JC, Johnson KN (2011) Wolbachia-mediated antibacterial protection and immune gene regulation in Drosophila. PLoS One 6:e25430. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Xi Z, Dean JL, Khoo C, Dobson SL (2005a) Generation of a novel Wolbachia infection in Aedes albopictus (Asian tiger mosquito) via embryonic microinjection. Insect Biochem Mol Biol 35:903–910CrossRefPubMedPubMedCentralGoogle Scholar
  60. Xi Z, Khoo CC, Dobson SL (2005b) Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310:326–328. CrossRefPubMedGoogle Scholar
  61. Xi Z, Gavotte L, Xie Y, Dobson SL (2008) Genome-wide analysis of the interaction between the endosymbiotic bacterium Wolbachia and its Drosophila host. BMC Genomics 9:1. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Xu J, Cherry S (2014) Viruses and antiviral immunity in Drosophila. Dev Comp Immunol 42:67–84. CrossRefPubMedGoogle Scholar
  63. Ye YH, Woolfit M, Rances E, O'Neill SL, McGraw EA (2013) Wolbachia-associated bacterial protection in the mosquito Aedes aegypti. PLoS Negl Trop Dis 7:e2362. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zug R, Hammerstein P (2012) Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One 7:e38544. CrossRefPubMedPubMedCentralGoogle Scholar
  65. Zug R, Koehncke A, Hammerstein P (2012) Epidemiology in evolutionary time: the case of Wolbachia horizontal transmission between arthropod host species. J Evol Biol 25:2149–2160. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.School of Biological SciencesMonash UniversityClaytonAustralia

Personalised recommendations