Advertisement

Symbiosis

, Volume 74, Issue 1, pp 1–10 | Cite as

Plant-symbiont interactions: the functional role of expansins

  • Sudipta Kumar Mohanty
  • Manoj-Kumar Arthikala
  • Kalpana Nanjareddy
  • Miguel Lara
Article

Abstract

Expansins are non-enzymatic cell wall proteins that mediate plant growth by catalyzing loosening of cell walls without lysing the wall polymers. Advances in the field of bioinformatics have facilitated the prediction of the members of expansin gene family across several model plants. Expansins constitutes into four sub-families; α-expansin, β-expansin, expansin-like A and expansin-like B. Biological functions of expansin gene family include diverse aspects of plant growth and development, shoot and root elongation, leaf morphogenesis, flower and fruit development, embryogenesis, pollen tube growth, stress tolerance, etc. Recent studies have demonstrated the role of expansins in plant-symbiotic interactions. The present review reveals the factors that govern plant-arbuscular mycorrhizal fungi (AMF) and legume-rhizobia symbioses; and the genes that participate in these diverse symbiont interactions. Further, we focus on the expression profiles and the functions of expansins during plant-AMF and legume-rhizobia interactions. The key roles of expansin proteins during AMF invasion, arbuscule formation, rhizobial infection and nodule organogenesis were uncovered during symbioses. This review summarizes discoveries that support the key and versatile roles of various expansin members in the plant-mycorrhizal and legume-rhizobial symbioses.

Keywords

Arbuscular mycorrhizal fungi Arbuscule formation Expansin Infection threads Nodulation Rhizobia Symbioses 

Notes

Acknowledgements

This work was supported by the Consejo Nacional de Ciencia y Tecnològia (CONACYT grant no. 240614), PAPIIT (DGAPA-UNAM grant no. IN219916) to M.L. and DGAPA-UNAM postdoctoral fellowship (DGAP/DG0639/2016) to S.K.M.

References

  1. Ané JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GE, Ayax C, Lévy J, Debellé F, Baek JM, Kalo P, Rosenberg C, Roe BA, Long SR, Dénarié J, Cook DR (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303:1364–1367CrossRefPubMedGoogle Scholar
  2. Arrighi JF, Barre A, Ben Amor B, Bersoult A, Soriano LC, Mirabella R, de Carvalho-Niebel F, Journet EP, Ghérardi M, Huguet T, Geurts R, Dénarié J, Rougé P, Gough C (2006) The Medicago truncatula lysin motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol 142:265–279CrossRefPubMedPubMedCentralGoogle Scholar
  3. Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 20:642–650CrossRefPubMedGoogle Scholar
  4. Balestrini R, Cosgrove DJ, Bonfante P (2005) Differential location of α-expansin proteins during the accommodation of root cells to an arbuscular mycorrhizal fungus. Planta 220:889–899CrossRefPubMedGoogle Scholar
  5. Balestrini R, Ott T, Güther M, Bonfante P, Udvardi MK, De Tullio MC (2012) Ascorbate oxidase: the unexpected involvement of a 'wasteful enzyme' in the symbioses with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi. Plant Physiol Biochem 59:71–79CrossRefPubMedGoogle Scholar
  6. Belfield EJ, Ruperti B, Roberts JA, McQueen-Mason S (2005) Changes in expansin activity and gene expression during ethylene-promoted leaflet abscission in Sambucus nigra. J Exp Bot 56:817–823CrossRefPubMedGoogle Scholar
  7. Besserer A, Puech-Pagés V, Kiefer P, Gómez-Roldán V, Jauneau A, Roy S et al (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:e226CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary developmental perspective. Trends Plant Sci 13:492–498CrossRefPubMedGoogle Scholar
  9. Boron AK, Van Loock B, Suslov D, Markakis MN, Verbelen JP, Vissenberg K (2015) Over-expression of AtEXLA2 alters etiolated Arabidopsis hypocotyl growth. Ann Bot 115:67–80CrossRefPubMedGoogle Scholar
  10. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304CrossRefGoogle Scholar
  11. van Brussel AAN, Bakhuizen R, Vanspronsen PC, Spaink HP, Tak T, Lugtenberg BJJ et al (1992) Induction of preinfection thread structures in the leguminous host plant by mitogenic lipooligosaccharides of Rhizobium. Science 257:70–72CrossRefPubMedGoogle Scholar
  12. de Carvalho GAB, Batista JSS, Marcelino-Guimarães FC, do Nascimento LC, Hungria M (2013) Transcriptional analysis of genes involved in nodulation in soybean roots inoculated with Bradyrhizobium japonicum strain CPAC 15. BMC Genomics 14:153CrossRefPubMedGoogle Scholar
  13. Charpentier M, Bredemeier R, Wanner G, Takeda N, Schleiff E, Parniske M (2008) Lotus japonicus CASTOR and POLLUX are ion channels essential for perinuclear calcium spiking in legume root endosymbiosis. Plant Cell 20:3467–3479CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chen F, Bradford KJ (2000) Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiol 124:1265–1274CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cho HT, Cosgrove DJ (2002) Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14:3237–3253CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cosgrove DJ (2000a) New genes and new biological roles for expansins. Curr Opin Plant Biol 3:73–78CrossRefPubMedGoogle Scholar
  17. Cosgrove DJ (2000b) Loosening of plant cell walls by expansins. Nature 407:321–326CrossRefPubMedGoogle Scholar
  18. Cosgrove DJ, Bedinger P, Durachko DM (1997) Group I allergens of grass pollen as cell wall-loosening agents. Proc Natl Acad Sci U S A 94:6559–6564CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cosgrove DJ, Li LC, Cho HT, Hoffmann-Benning S, Moore RC, Blecker D (2002) The growing world of expansins. Plant Cell Physiol 43:1436–1444CrossRefPubMedGoogle Scholar
  20. Deising HB, Werner S, Wernitz M (2000) The role of fungal appressoria in plant infection. Microbes Infect 2:1631–1641CrossRefPubMedGoogle Scholar
  21. Dermatsev V, Weingarten-baror C, Resnick N, Gadkar V, Wininger S, Kolotilin I, Mayzlish-gati E, Zilberstein A, Koltai H, Kapulnik Y (2010) Microarray analysis and functional tests suggest the involvement of expansins in the early stages of symbiosis of the arbuscular mycorrhizal fungus Glomus intraradices on tomato (Solanum lycopersicum). Mol Plant Pathol 11:121–135CrossRefPubMedGoogle Scholar
  22. Devi MJ, Taliercio EW, Sinclair TR (2015) Leaf expansion of soybean subjected to high and low atmospheric vapour pressure deficits. J Exp Bot 66:1845–1850CrossRefPubMedPubMedCentralGoogle Scholar
  23. Flemetakis E, Efrose RC, Desbrosses G, Dimou M, Delis C, Aivalakis G, Udvardi MK, Katinakis P (2004) Induction and spatial organization of polyamine biosynthesis during nodule development in Lotus japonicus. Mol Plant-Microbe Interact 17:1283–1293CrossRefPubMedGoogle Scholar
  24. Genre A, Chabaud M, Faccio A, Barker DG, Bonfante P (2008) Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. Plant Cell 20:1407–1420CrossRefPubMedPubMedCentralGoogle Scholar
  25. Genre A, Chabaud M, Balzergue C, Puech-Pages V, Novero M, Rey T, Fournier J, Rochange S, Becard G, Bonfante P et al (2013) Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol 198:190–202CrossRefPubMedGoogle Scholar
  26. Georgelis N, Nikolaidis N, Cosgrove DJ (2015) Bacterial expansins and related proteins from the world of microbes. Appl Microbiol Biotechnol 99:3807–3823CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Péret B, Laplaze L, Franche C, Parniske M, Bogusz D (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria. Proc Natl Acad Sci U S A 105:4928–4932CrossRefPubMedPubMedCentralGoogle Scholar
  28. Giordano W, Hirsch AM (2004) The expression of MaEXP1, a Melilotus alba expansin gene, is upregulated during the sweetclover-Sinorhizobium meliloti inter action. Mol Plant-Microbe Interact 17:613–622CrossRefPubMedGoogle Scholar
  29. Godfroy O, Debelle F, Timmer T, Rosenberg C (2006) A rice calcium-and calmodulin-dependent kinase restores nodulation to a legume mutant. Mol Plant-Microbe Interact 19:495–501CrossRefPubMedGoogle Scholar
  30. Gray-Mitsumune M, Mellerowicz EJ, Abe H, Schrader J, Winzéll A, Sterky F, Blomqvist K, McQueen-Mason S, Teeri TT, Sundberg B (2004) Expansins abundant in secondary xylem belong to subgroup A of the α-expansin gene family. Plant Physiol 135:1552–1564CrossRefPubMedPubMedCentralGoogle Scholar
  31. Groth M, Takeda N, Perry J, Uchida H, Dräxl S, Brachmann A et al (2010) NENA, a Lotus japonicus homolog of Sec13, is required for Rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development. Plant Cell 22:2509–2526CrossRefPubMedPubMedCentralGoogle Scholar
  32. Guether M, Balestrini R, Hannah M, He J, Udvardi MK, Bonfante P (2009) Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol 182:200–212CrossRefPubMedGoogle Scholar
  33. Guo W, Zhao J, Li X, Qin L, Yan X, Liao H (2011) A soybean ß-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. Plant J 66:541–552CrossRefPubMedGoogle Scholar
  34. Györgyey J, Vaubert D, Jiménez-Zurdo JI, Charon C, Troussard L, Kondorosi A, Kondorosi E (2000) Analysis of Medicago truncatula nodule expressed sequence tags. Mol Plant-Microbe Interact 13:62–71CrossRefPubMedGoogle Scholar
  35. Han Y, Chen Y, Yin S, Zhang M, Wang W (2015) Over-expression of TaEXPB23, a wheat expansin gene, improves oxidative stress tolerance in transgenic tobacco plants. J Plant Physiol 173:62–71CrossRefPubMedGoogle Scholar
  36. Hayashi T, Banba M, Shimoda Y, Kouchi H, Hayashi M, Imaizumi-Anraku H (2010) A dominant function of CCaMK in intracellular accommodation of bacterial and fungal endosymbionts. Plant J 63:141–154PubMedPubMedCentralGoogle Scholar
  37. He X, Zeng J, Cao F, Ahmed IM, Zhang G, Vincze E, Wu F (2015) HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress. J Exp Bot 66:7405–7419CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EMH, Miwa H, Downie JA, James EK, Felle HH, Haaning LL, Jensen TH, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J (2006) A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci U S A 103:359–364CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kende H, Bradford K, Brummell D, Cho HT, Cosgrove DJ, Fleming AJ, Gehring C, Lee Y, McQueen-Mason S, Rose J, Voesenek L (2004) Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol Biol 55:311–314CrossRefPubMedGoogle Scholar
  40. Kistner C, Winzer T, Pitzschke A, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Webb KJ, Szczyglowski K, Parniske M (2005) Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell 17:2217–2229CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:341–344CrossRefPubMedGoogle Scholar
  42. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedGoogle Scholar
  43. Kwasniewski M, Szarejko I (2006) Molecular cloning and characterization of beta-expansin gene related to root hair formation in barley. Plant Physiol 141:1149–1158CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lee Y, Kende H (2001) Expression of beta-expansins is correlated with Internodal elongation in deepwater rice. Plant Physiol 127:645–654CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lee HW, Kim J (2013) EXPANSINA17 up-regulated by LBD18/ASL20 promotes lateral root formation during the auxin response. Plant Cell Physiol 54:1600–1611CrossRefPubMedGoogle Scholar
  46. Lee DK, Ahn JH, Song S-K, Choi YD, Lee JS (2003) Expression of an expansin gene is correlated with root elongation in soybean. Plant Physiol 131:985–997CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lévy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ané JM, Lauber E, Bisseling T, Dénarié J, Rosenberg C, Debellé F (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–1364CrossRefPubMedGoogle Scholar
  48. Li X, Zhao J, Walk TC, Liao H (2014) Characterization of soybean β-expansin genes and their expression responses to symbiosis, nutrient deficiency, and hormone treatment. Appl Microbiol Biotechnol 98:2805–2817CrossRefPubMedGoogle Scholar
  49. Li X, Zhao J, Tan Z, Zeng R, Liao H (2015) GmEXPB2, a cell wall ß-expansin, affects soybean nodulation through modifying root architecture and promoting nodule formation and development. Plant Physiol 169:2640–2653PubMedPubMedCentralGoogle Scholar
  50. Lü P, Kang M, Jiang X, Dai F, Gao J, Zhang C (2013) RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis. Planta 237:1547–1559CrossRefPubMedGoogle Scholar
  51. Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425:637–640CrossRefPubMedGoogle Scholar
  52. Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Bécard G, Dénarié J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63CrossRefPubMedGoogle Scholar
  53. McQueen-Mason S, Cosgrove DJ (1994) Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proc Natl Acad Sci U S A 1:6574–6578CrossRefGoogle Scholar
  54. McQueen-Mason SJ, Cosgrove DJ (1995) Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol 107:87–100CrossRefPubMedPubMedCentralGoogle Scholar
  55. McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433CrossRefPubMedPubMedCentralGoogle Scholar
  56. Miyahara A, Richens J, Starker C, Morieri G, Smith L, Long S, Downie JA, Oldroyd GED (2010) Conservation in function of a SCAR/WAVE component during infection thread and root hair growth in Medicago truncatula. Mol Plant Microbe Interact 23:1553–1562CrossRefPubMedGoogle Scholar
  57. Nardi CF, Villarreal NM, Rossi FR, Martínez S, Martínez GA, Civello PM (2015) Overexpression of the carbohydrate binding module of strawberry expansin2 in Arabidopsis thaliana modifies plant growth and cell wall metabolism. Plant Mol Biol 88:101–117CrossRefPubMedGoogle Scholar
  58. Oldroyd GED, Downie JA (2004) Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol 5:566–576CrossRefPubMedGoogle Scholar
  59. Oldroyd GED, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546CrossRefPubMedGoogle Scholar
  60. Parniske M (2000) Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? Curr Opin Plant Biol 3:320–328CrossRefPubMedGoogle Scholar
  61. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775CrossRefPubMedGoogle Scholar
  62. Pezzotti M, Feron R, Mariani C (2002) Pollination modulates expression of the PPAL gene, a pistil-specific beta-expansin. Plant Mol Biol 49:187–197CrossRefPubMedGoogle Scholar
  63. Robledo M, Jiménez-Zurdo JI, Velázquez E, Trujillo ME, Zurdo-Piñeiro JL, Ramírez-Bahena MH, Ramos B, Díaz-Mínguez JM, Dazzo F, Martínez-Molina E, Mateos PF (2008) Rhizobium cellulase CelC2 is essential for primary symbiotic infection of legume host roots. Proc Natl Acad Sci U S A 105:7064–7069CrossRefPubMedPubMedCentralGoogle Scholar
  64. Saito K, Yoshikawa M, Yano K, Miwa H, Uchida H, Asamizu E, Sato S, Tabata S, Imaizumi-Anraku H, Umehara Y, Kouchi H, Murooka Y, Szczyglowski K, Downie JA, Parniske M, Hayashi M, Kawaguchi M (2007) NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell 19:610–624CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sasidharan R, Chinnappa CC, Staal M, Elzenga JTM, Yokoyama R, Nishitani K et al (2010) Light quality-mediated petiole elongation in Arabidopsis during shade avoidance involves Cell Wall modification by xyloglucan Endotransglucosylase/hydrolases. Plant Physiol 154:978–990CrossRefPubMedPubMedCentralGoogle Scholar
  66. Schaller A, Stintzi A, Graff L (2012) Subtilases - versatile tools for protein turnover, plant development, and interactions with the environment. Physiol Plant 145:52–66CrossRefPubMedGoogle Scholar
  67. Siciliano V, Genre A, Balestrini R, Cappellazzo G, deWit PJGM, Bonfante P (2007) Transcriptome analysis of arbuscular mycorrhizal roots during development of the prepenetration apparatus. Plant Physiol 144:1455–1466CrossRefPubMedPubMedCentralGoogle Scholar
  68. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, LondonGoogle Scholar
  69. Spaink HP (1995) The molecular basis of infection and nodulation by rhizobia: the ins and outs of sympathogenesis. Annu Rev Phytopathol 33:345–368CrossRefPubMedGoogle Scholar
  70. Sprent JI (2008) 60Ma of legume nodulation. What’s new? What’s changing? J Exp Bot 59:1081–1084CrossRefPubMedGoogle Scholar
  71. van Spronsen PC, Bakhuizen R, van Brussel AA, Kijne JW (1994) Cell wall degradation during infection thread formation by the root nodule bacterium Rhizobium leguminosarum is a two-step process. Eur J Cell Biol 64:88–94PubMedGoogle Scholar
  72. Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962CrossRefPubMedGoogle Scholar
  73. Sujkowska M, Borucki W, Golinowski W (2007) Localization of expansin-like protein in apoplast of pea (Pisum sativum L.) root nodules during interaction with Rhizobium leguminosarum bv. viciae. Acta Soc Bot Pol 76:17–26CrossRefGoogle Scholar
  74. Takeda N, Sato S, Asamizu E, Tabata S, Parniske M (2009) Apoplastic plant subtilases support arbuscular mycorrhiza development in Lotus japonicus. Plant J 58:766–777CrossRefPubMedGoogle Scholar
  75. Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A et al (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193:755–769CrossRefPubMedGoogle Scholar
  76. Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R et al (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci U S A 110:20117–20122CrossRefPubMedPubMedCentralGoogle Scholar
  77. Veneault-Fourrey C, Commun C, Kohler A, Morin E, Balestrini R, Plett J, Danchin E, Coutinho P, Wiebenga A, de Vries RP, Henrissat B, Martin F (2014) Genomic and transcriptomic analysis of Laccaria bicolor CAZome reveals insights into polysaccharides remodelling during symbiosis establishment. Fungal Genet Biol 72:168–181CrossRefPubMedGoogle Scholar
  78. Wei P, Chen S, Zhang X, Zhao P, Xiong Y, Wang W, Wang X (2011) An a-expansin, VfEXPA1, is involved in regulation of stomatal movement in Vicia faba L. Chin Sci Bull 56:3531–3537CrossRefGoogle Scholar
  79. Willmann M, Gerlach N, Buer B, Polatajko A, Nagy R, Koebke E, Jansa J, Flisch R, Bucher M (2013) Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils. Front Plant Sci 4:533CrossRefPubMedPubMedCentralGoogle Scholar
  80. Wiśniewska M, Golinowski W (2011) Immunolocalization of α-expansin protein (ntexpa5) in tobacco roots in the presence of the arbuscular mycorrhizal fungus Glomus mosseae Nicol. & Gerd. Acta biologicacracoviensia Series Botanica 53:113–123Google Scholar
  81. Won S-K, Choi S-B, Kumari S, Cho M, Lee SH, Cho H-T (2010) Root hair specific EXPANSIN B genes have been selected for graminaceae root hairs. Mol Cells 30:369–376CrossRefPubMedGoogle Scholar
  82. Xie F, Murray JD, Kim J, Heckmann AB, Edwards A, Oldroyd GED, Downie JA (2012) Legume pectate lyase required for root infection by rhizobia. Proc Natl Acad Sci U S A 109:633–638CrossRefPubMedGoogle Scholar
  83. Yano K, Yoshida S, Müller J, Singh S, Banba M, Vickers K, Markmann K, White C, Schuller B, Sato S, Asamizu E, Tabata S, Murooka Y, Perry J, Wang TL, Kawaguchi M, Imaizumi-Anraku H, Hayashi M, Parniske M (2008) CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Natl Acad Sci U S A 105:20540–20545CrossRefPubMedPubMedCentralGoogle Scholar
  84. Yokota K, Fukai E, Madsen LH, Jurkiewicz A, Rueda P, Radutoiu S et al (2009) Rearrangement of actin cytoskeleton mediates invasion of Lotus japonicus roots by Mesorhizobium loti. Plant Cell 21:267–284CrossRefPubMedPubMedCentralGoogle Scholar
  85. Yu Z, Kang B, He X, Lv S, Bai Y, Ding W, Wu P (2011) Root hair specific expansins modulate root hair elongation in rice. Plant J 66:725–734CrossRefGoogle Scholar
  86. Zou H, Wenwen Y, Zang G, Kang Z, Zhang Z, Huang J, Wang G (2015) OsEXPB2, a ß-expansin gene, is involved in rice root system architecture. Mol Breed 35:41CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Instituto de Biología, Universidad Nacional Autónoma de México (UNAM)Ciudad de MéxicoMexico
  2. 2.Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México (UNAM)GuanajuatoMexico

Personalised recommendations