Symbiosis

, Volume 70, Issue 1–3, pp 37–48 | Cite as

Organic acids metabolism in Frankia alni

  • Lorena Carro
  • Tomas Persson
  • Petar Pujic
  • Nicole Alloisio
  • Pascale Fournier
  • Hasna Boubakri
  • Katharina Pawlowski
  • Philippe Normand
Article

Abstract

Trophic exchanges constitute the bases of the symbiosis between the nitrogen-fixing actinomycete Frankia and its host plant Alnus, but the identity of the compounds exchanged is still poorly known. In the current work, previously published transcriptomic studies of Alnus nodules and of symbiotic Frankia were reexamined for TCA cycle related genes. The bacterial TCA enzyme genes were all upregulated, especially the succinyl-CoA synthase and the citrate synthase while on the plant side, none was significantly modified in nodules relative to non-inoculated roots. A preliminary metabolomics approach permitted to see that citrate, 2-oxoglutarate, succinate, malate and fumarate were all more abundant (FC (Fold change) = 5–70) in mature nitrogen-fixing nodules than in roots. In the evaluation of the uptake and metabolism of these organic acids, a significant change was observed in the morphology of nitrogen fixing vesicles in vitro: the dicarboxylates malate, succinate and fumarate induced the formation of larger vesicles than was the case with propionate. Moreover, the production of spores was also modified depending on the organic acid present. The assays showed that most C4 dicarboxylates were taken up while C6 tricarboxylates were not and citrate even partially blocked catabolism of reserve carbon. Tests were performed to determine if the change in membrane permeability induced by Ag5, a peptide previously shown to modify the membranes of Frankia, increased the uptake of specific organic acids. No effect was observed with citrate while an increase in nitrogen fixation was seen with propionate.

Keywords

Dicarboxylates Frankia Propionate Nitrogen fixation Respiration Vesicles 

References

  1. Akkermans ADL, Huss-Danell K, Roelofsen W (1981) Enzymes of the tricarboxylic acid cycle and the malate-aspartate shuttle in the N2-fixing endophyte of Alnus glutinosa. Physiol Plant 53:289–294. doi:10.1111/j.1399-3054.1981.tb04502.x
  2. Alloisio N et al (2010) The Frankia alni symbiotic transcriptome. Mol Plant Microbe Interact 23:593–607. doi:10.1094/MPMI-23-5-0593 CrossRefPubMedGoogle Scholar
  3. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc Ser B 57:289–300Google Scholar
  4. Berry AM, Harriott OT, Moreau RA, Osman SF, Benson DR, Jones AD (1993) Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase PNAS 90:6091–6094Google Scholar
  5. Blom J, Roelofsen W, Akkermans A (1980) Growth of Frankia AvcI1 on media containing tween 80 as C-source. FEMS Microbiol Lett 9:131–135CrossRefGoogle Scholar
  6. Callaham D, Del Tredici P, Torrey JG (1978) Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science 199:899–902CrossRefPubMedGoogle Scholar
  7. Carro L et al (2015) Alnus peptides modify membrane porosity and induce the release of nitrogen-rich metabolites from nitrogen-fixing Frankia. ISME J. doi:10.1038/ismej.2014.257
  8. de Vos CR, Lubberding HJ, Bienfait HF (1986) Rhizosphere acidification as a response to iron deficiency in bean plants. Plant Physiol 81:842–846. doi:10.1104/pp.81.3.842 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Guan C, Ribeiro A, Akkermans AD, Jing Y, van Kammen A, Bisseling T, Pawlowski K (1996) Nitrogen metabolism in actinorhizal nodules of Alnus glutinosa: expression of glutamine synthetase and acetylornithine transaminase. Plant Mol Biol 32:1177–1184Google Scholar
  10. Harris S, Silvester W (1992) Oxygen controls the development of Frankia vesicles in continuous culture. New Phytol 121:43–48Google Scholar
  11. Hocher V et al (2011) Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol 156:700–711. doi:10.1104/pp.111.174151 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Huss-Danell K (1997) Actinorhizal symbioses and their N2 fixation. New Phytol 136:375–405. doi:10.1046/j.1469-8137.1997.00755.x
  13. Igual JM, Velazquez E, Mateos PF, Rodrıguez-Barrueco C, Cervantes E, Martınez-Molina E (2001) Cellulase isoenzyme profiles in Frankia strains belonging to different cross-inoculation groups. Plant Soil 229:35–39Google Scholar
  14. Jeong J et al (2004) A nodule-specific dicarboxylate transporter from alder is a member of the peptide transporter family. Plant Physiol 134:969–978CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jolkver E, Emer D, Ballan S, Kramer R, Eikmanns BJ, Marin K (2009) Identification and characterization of a bacterial transport system for the uptake of pyruvate, propionate, and acetate in Corynebacterium glutamicum. J Bacteriol 191:940–948. doi:10.1128/JB.01155-08 CrossRefPubMedGoogle Scholar
  16. Korithoski B, Krastel K, Cvitkovitch DG (2005) Transport and metabolism of citrate by Streptococcus mutans. J Bacteriol 187:4451–4456CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lalonde M (1979) Immunological and ultrastructural demonstration of nodulation of the European Alnus glutinosa (L.) Gaertn. host plant by an actinomycetal isolate from the North American Comptonia peregrina (L.) Coult. root nodule. Bot Gaz 140(S):S35–S43CrossRefGoogle Scholar
  18. Laplaze L et al (1999) Flavan-containing cells delimit Frankia-infected compartments in Casuarina glauca nodules. Plant Physiol 121:113–122CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lechevalier M (1984) The taxonomy of the genus Frankia. Plant Soil 78:1–6CrossRefGoogle Scholar
  20. López-Bucio J, Nieto-Jacobo MF, Ramírez-Rodríguez V, Herrera-Estrella L (2000) Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci 160:1–13CrossRefPubMedGoogle Scholar
  21. Mastronunzio J, Benson D (2010) Wild nodules can be broken: proteomics of Frankia in field-collected root nodules. Symbiosis 50:13–26. doi:10.1007/s13199-009-0030-1
  22. Mort A, Normand P, Lalonde M (1983) 2-O-methyl-D-mannose, a key sugar in the taxonomy of Frankia. Can J Microbiol 29:993–1002CrossRefGoogle Scholar
  23. Murry M, Fontaine M, Torrey J (1984) Growth kinetics and nitrogenase induction in Frankia sp. HFPArI3 grown in batch culture. Plant Soil 78:61–78CrossRefGoogle Scholar
  24. Normand P, Lalonde M (1982) Evaluation of Frankia strains isolated from provenances of two Alnus species. Can J Microbiol 28:1133–1142CrossRefGoogle Scholar
  25. Normand P, Orso S, Cournoyer B, Jeannin P, Chapelon C, Dawson J, Evtushenko L, Misra AK (1996) Molecular phylogeny of the genus Frankia and related genera and emendation of the family frankiaceae. IJSEM 46(1):1–9Google Scholar
  26. Oono R, Anderson CG, Ford Denison R (2011) Failure to fix nitrogen by non-reproductive symbiotic rhizobia triggers host sanctions that reduce fitness of their reproductive clonemates. Proc Biol Sci 278:2698–2703CrossRefPubMedPubMedCentralGoogle Scholar
  27. Prin Y, Neyra M, Diem H (1990) Estimation of Frankia growth using Bradford protein and INT reduction activity estimations: application to inoculum standardization. FEMS Microbiol Lett 69:91–96CrossRefGoogle Scholar
  28. Reynolds CH, Silver S (1983) Citrate utilization by Escherichia coli: plasmid- and chromosome-encoded systems. J Bacteriol 156:1019–1024PubMedPubMedCentralGoogle Scholar
  29. Sá-Pessoa J, Paiva S, Ribas D, Silva IJ, Viegas SC, Arraiano CM, Casal M (2013) SATP (YaaH), a succinate-acetate transporter protein in Escherichia coli. Biochem J 454:585–95CrossRefPubMedGoogle Scholar
  30. Sen A, Daubin V, Abrouk D, Gifford I, Berry AM, Normand P (2014) Phylogeny of the class Actinobacteria revisited in the light of complete genomes. The orders ‘Frankiales’ and Micrococcales should be split into coherent entities: proposal of Frankiales ord. nov., Geodermatophilales ord. nov., Acidothermales ord. nov. and Nakamurellales ord. Int J Syst Evol Microbiol 64:3821–3832. doi:10.1099/ijs.0.063966-0 CrossRefPubMedGoogle Scholar
  31. Stowers M, Kulkarni R, Steele D (1986) Intermediary carbon metabolism in Frankia. Arch Microbiol 143:319–324Google Scholar
  32. Tisa L, McBride M, Ensign JC (1983) Studies on the growth and morphology of Frankia strains EAN1pec, EuI1c, and ACN1AG. Can J Bot 61:2768–2773CrossRefGoogle Scholar
  33. Tjepkema JD, Schwintzer CR, Monz CA, (1988). Time course of acetylene reduction in nodules of five actinorhizal genera. Plant physiol 86(2):581–58Google Scholar
  34. Torrey JG, Callaham D (1982) Structural features of the vesicle of Frankia sp. CpI1 in culture. Can J Microbiol 28:749–757. doi:10.1139/m82-114
  35. Van de Velde W et al (2010) Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327:1122–1126CrossRefPubMedGoogle Scholar
  36. Vikman P-Å (1992) The symbiotic vesicle is a major site for respiration in Frankia from Alnus incana root nodules. Can J Microbiol 38:779–784. doi:10.1139/m92-127
  37. Watanabe R, Hojo K, Nagaoka S, Kimura K, Ohshima T, Maeda N (2011) Antibacterial activity of sodium citrate against oral bacteria isolated from human tongue dorsum. J Oral Biosci 53:87–92CrossRefGoogle Scholar
  38. Zhang X, Benson D (1992) Utilization of amino acids by Frankia sp. strain CpI1. Arch Microbiol 158:256–261CrossRefGoogle Scholar

Copyright information

© European Union 2016

Authors and Affiliations

  • Lorena Carro
    • 1
    • 3
  • Tomas Persson
    • 2
  • Petar Pujic
    • 1
  • Nicole Alloisio
    • 1
  • Pascale Fournier
    • 1
  • Hasna Boubakri
    • 1
  • Katharina Pawlowski
    • 2
  • Philippe Normand
    • 1
  1. 1.Université Lyon 1, Université LyonVilleurbanneFrance
  2. 2.Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
  3. 3.School of BiologyUniversity of NewcastleNewcastleUK

Personalised recommendations