Advertisement

Symbiosis

, Volume 65, Issue 3, pp 117–123 | Cite as

Mycorrhizal Fungi (AMF) increase the content of biomolecules in leaves of Inga vera Willd. seedlings

  • Cleilton Santos LimaEmail author
  • Maryluce Albuquerque da Silva Campos
  • Fábio Sérgio Barbosa da Silva
Article

Abstract

Ingazeira (Inga vera Willd.), a plant native to Brazil is commonly used by Brazilians for its medicinal properties and the value of its wood. Various plants with therapeutic properties and economic importance benefit from mycorrhizal inoculation, which produces larger quantities of therapeutic compounds. However, the effects of mycorrhizal inoculation on ingazeira have not yet been studied. The objective of this paper is to evaluate the effectiveness of arbuscular mycorrhizal fungi (AMF) on the growth of seedlings and production of primary and secondary metabolites, and to determine the total foliar antioxidant activity in ingazeira seedlings. Soil-inoculum was applied to the root region of ingazeira plantlets, which were transplanted into sacs containing 1.2 kg of soil and 10 % vermicompost (100 g vermicompost kg−1 soil). The inoculum consisted of 200 glomerospores per pot of each AMF: Gigaspora albida N.C. Schenck & G.S. Sm. (UFPE 01), Acaulospora longula Spain & N.C. Schenck (UFPE 21), or Claroideoglomus etunicatum (W. N. Becker & Gerd.) C. Walker & A. Schussler (UFPE 06). After 140 days in a greenhouse, growth variables, primary and secondary metabolite content, and total foliar antioxidant activity were determined. AMF optimized the growth and production of secondary metabolites. Mycorrhizal symbiosis can maximize growth and phytochemical production in ingazeira seedlings, thus providing an alternative to the installation of sustainable crops of this leguminous plant.

Keywords

Fabaceae Bioactive compounds Glomeromycota Plant growth 

Notes

Acknowledgments

To the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (processo n° 473779/2011-0) for its financial support and to the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE) for granting a Master’s scholarship to the first author and to the student Hicaro Ribeiro Soares dos Santos for his help in the installation, removal and evaluation of the experiment.

References

  1. Aguiar RLF, Maia LC, Salcedo IH, Sampaio EVSB (2004) Interação entre fungos micorrízicos arbusculares e fósforo no desenvolvimento da algaroba [Prosopis juliflora (Sw) DC]. Rev Arvore 28:589–598CrossRefGoogle Scholar
  2. Araim G, Saleem A, Arnason JT, Charest C (2009) Root colonization by an arbuscular mycorrhizal (AM) fungus increases growth and secondary metabolism of purple coneflower, Echinacea purpurea (L.) Moench. J Agric Food Chem 57:2255–2258PubMedCrossRefGoogle Scholar
  3. Araújo TAS, Alencar NL, Amorim ELC, Albuquerque UP (2008) A new approach to study medicinal plants with tannins and flavonoids contents from de local knowledge. J Ethnopharmacol 120:72–80CrossRefGoogle Scholar
  4. Assistat (2011) [Programa de Computador]. Versão 7.6 Beta: Assistência EstatísticaGoogle Scholar
  5. Baslam M, Garmendia I, Goicoechea N (2011) Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown Lettuce. J Agric Food Chem 59:5504–5515PubMedCrossRefGoogle Scholar
  6. Bonanomi A, Oetiker JH, Guggenheim R, Boller T, Wiemken A, Vögeli-Lange R (2001) Arbuscular mycorrhiza in mini-mycorrhizotrons: first contact of Medicago truncatula roots with Glomus intraradices induces chalcone synthase. New Phytol 150:573–582CrossRefGoogle Scholar
  7. Bradford MM (1976) A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  8. Brito HO, Noronha EP, França LM, Brito LMO, Prado MS-A (2008) Análise da composição fitoquímica do extrato etanólico das folhas da Annona squamosa (ATA). Rev Bras Farm 89:180–184Google Scholar
  9. Cavalcante UMT, Maia LC, Melo AMM, Santos VF (2002) Influência da densidade de fungos micorrízicos arbusculares na produção de mudas de maracujazeiro– amarelo. Pesq Agrop Brasileira 37:643–649CrossRefGoogle Scholar
  10. Ceccarelli N, Curadi M, Martelloni L, Sbrana C, Picciarelli P, Giovannetti M (2010) Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant Soil 335:311–323CrossRefGoogle Scholar
  11. Coelho IR, Cavalcante UMT, Campos MAS, Silva FSB (2012) Uso de fungos micorrízicos arbusculares (FMA) na promoção do crescimento de mudas de pinheira (Annona squamosa L., Annonaceae). Acta Bot Bras 26:933–937CrossRefGoogle Scholar
  12. Degáspari CH, Waszczynskyj N (2004) Propriedades antioxidantes de compostos fenólicos. Visao Acad 5:33–40Google Scholar
  13. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–355CrossRefGoogle Scholar
  14. Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA (2011) Laboratório de análises de solo e de planta. Petrolina, EMBRAPA semiáridoGoogle Scholar
  15. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500CrossRefGoogle Scholar
  16. Hernández-Ortega HA, Alarcón A, Ferrera-Cerrato R, Zavaleta-Mancera HA, López-Delgado HA, Mendoza-López MR (2012) Arbuscular mycorrhizal fungi on growth, nutrient status, and total antioxidant activity of Melilotus albus during phytoremediation of a diesel-contaminated substrate. J Environ Manag 95:S319–S324CrossRefGoogle Scholar
  17. Karagiannidis N, Thomidis T, Panou-Filotheou T (2012) Effects of Glomus lamellosum on growth, essential oil productionand nutrients uptake in selected medicinal plants. J Agric Sci 4:137–144Google Scholar
  18. Krishna H, Singh SK, Sharma RR, Khawale RN, Grover M, Patel VB (2005) Biochemical changes in micropropagated grape (Vitis vinifera L.) plantlets due to arbuscular mycorrhizal fungi (AMF) inoculation during ex vitro acclimatization. Sci Hortic 106:554–567CrossRefGoogle Scholar
  19. Lee J, Scagel CF (2009) Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chem 115:650–656CrossRefGoogle Scholar
  20. Lohse S, Schliemann W, Ammer C, Kopka J, Strack D, Fester T (2005) Organization and metabolism of plastids and mitochondria in arbuscular mycorrhizl roots of Medicago truncatula. Plant Physiol 139:329–340PubMedCentralPubMedCrossRefGoogle Scholar
  21. Mandal S, Evelin H, Giri B, Singh VP, Kapoor R (2013) Arbuscular mycorrhiza enhances the production of stevioside and rebaudioside - A in Stevia rebaudiana via nutritional and non-nutritional mechanism. Appl Soil Ecol 72:187–194CrossRefGoogle Scholar
  22. Manoharan PT, Shanmugaiah V, Balasubramanian N, Gomathinayagam S, Sharma MP, Muthuchelian K (2010) Influence of AM fungi on the growth and physiological status of Erythrina variegata Linn. grown under different water stress conditions. Eur J Soil Biol 46:151–156CrossRefGoogle Scholar
  23. Monteiro JM, Albuquerque UP, Lins Neto EM, Araújo EL, Albuquerque MM, Amorim ELC (2006) The effects of seasonal climate changes in the Caatinga on tannin levels in Myracrodruon urudeuva (Engl.) Fr. All, and Anadenanthera colubrina (Vell.) Brenan. Braz J Pharmacogn 16:338–344CrossRefGoogle Scholar
  24. Nell M, Vötsch M, Vierheilig H, Steinkellner S, Zitterl-Eglseer K, Franz C, Novak J (2009) Effect of phosphorus uptake on growth and secondary metabolites of garden sage (Salvia officinalis L.). J Sci Food Agric 89:1090–1096CrossRefGoogle Scholar
  25. Oliveira MS, Campos MAS, Albuquerque UP, Silva FSB (2013) Arbuscular mycorrhizal fungi (AMF) affects biomolecules content in Myracrodruon urundeuva seedlings. Ind Crop Prod 50:244–247CrossRefGoogle Scholar
  26. Pedone-Bonfim MVL, Lins MA, Coelho IR, Santana AS, Silva FSB, Maia LC (2013) Mycorrhizal technology and phosphorus in the production of primary and secondary metabolites in cebil (Anadenanthera colubrine (Vell.) Brenan) seedlings. J Sci Food Agric 92:1479–1484CrossRefGoogle Scholar
  27. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161CrossRefGoogle Scholar
  28. Rahmaty R, Khara J (2011) Effects of vesicular arbuscular mycorrhizal Glomus intraradices on photosynthetic pigments, antioxidant enzymes, lipid peroxidation, and chromium accumulation in maize plants treated with chromium. Turk J Biol 35:51–58Google Scholar
  29. Rasouli-Sadaghiani M, Hassani A, Barin M, Danesh YR, Sefidkon F (2010) Effects of arbuscular mycorrhizal (AM) fungi on growth, essential oil production and nutrients uptake in basil. J Med Plant Res 4:2222–2228Google Scholar
  30. Ratti N, Verma HN, Gautam SP (2010) Effect of Glomus species on physiology and biochemistry of Catharantus roseus. Indian J Microbiol 50:355–360PubMedCentralPubMedCrossRefGoogle Scholar
  31. Rodrigues VEG, Carvalho DA (2001) Levantamento etnobotanico de plantas medicinais no domínio cerrado na região do alto Rio Grande – Minas Gerais. Cienc Agrotecnol 25:2–123Google Scholar
  32. Rondon-Neto RB, Santos JS, Silva MA, Koppe VC (2010) Potencialidades de uso de espécies arbustivas e arbóreas em diferentes fisionomias de cerrado, em Lucas do Rio Verde/MT. Rev Biol Ciênc Terra 10:113–126Google Scholar
  33. Rufino MSM, Alves RE, Brito ES, Morais SM, Sampaio CG, Pérez-Jiménez J, Saura-Calixto FD (2007) Determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. Comunicado Técnico 127. Fortaleza, Embrapa Agroindústria TropicalGoogle Scholar
  34. Samarão SS, Rodrigues LA, Martins AM, Manhães TN, Alvim LAM (2011) Desempenho de mudas de gravioleira inoculadas com fungos micorrízicos arbusculares em solo não-esterilizado, com diferentes doses de fósforo. Acta Sci Agron 33:81–88CrossRefGoogle Scholar
  35. Santos SCM, Mello JCP (2003) Taninos. In: Simões CMO, Schenkel EP, Gosmann G, Pallazzo DE, Mello JC, Mentz LA, Petrovick PR (eds) Farmacognosia: da planta ao medicamento, 5th edn. UFRGS, Porto Alegre, pp 615–656Google Scholar
  36. Santos DR, Costa MCS, Miranda JRP, Santos RV (2008) Micorriza e rizóbio no crescimento e nutrição em N e P de mudas de angico-vermelho. Rev Caatinga 21:76–82Google Scholar
  37. Silva FSB (2006) Fase assimbiótica, produção, infectividade e efetividade de fungos micorrízicos arbusculares (FMA) em substratos com adubos orgânicos. Tese de doutorado, Universidade Federal de PernambucoGoogle Scholar
  38. Silva LF, Silva ML, Cordeiro AS (2012) Análise do mercado mundial de madeireiras tropicais. Rev Polit Agric 21:48–54Google Scholar
  39. Siqueira-Filho JA, Santos APB, Nascimento MFS, Espírito Santo FS (2009) Guia de Campo de Árvores da Caatinga. Editora e gráfica Franciscana Ltda, PetrolinaGoogle Scholar
  40. Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd edn. Academic Press, LondonGoogle Scholar
  41. Sugai MAA, Collier LS, Saggin-Júnior OJ (2011) Inoculação micorrízica no crescimento de mudas de angico em solo de cerrado. Bragantia 70:416–423CrossRefGoogle Scholar
  42. Thamizhiniyan P, Panneerselvam M, Lenin M (2009) Studies on the growth and biochemical activity of Coleus aromaticus Benth. as influenced by AM fungi and Azospirillum. Recent Res Sci Technol 1:259–263Google Scholar
  43. Toussaint J-P (2007) Investigating physiological changes in the aerial parts of AM plants: what do we where should we be heading? Mycorrhiza 17:349–353PubMedCrossRefGoogle Scholar
  44. Toussaint J-P, Kraml M, Nell SE, Smith FA, Steinkellner S, Schmiderer C, Vierheilig H, Novak J (2008) Effect of Glomus mosseae on concentration of rosmarinic and caffeic acids and essential oil compounds in basil inoculated with Fusarium oxysporum f. sp. Basilica. Plant Pathol 57:1109–1116CrossRefGoogle Scholar
  45. Ubessi-Macarini C, Negrelle RRB, Souza MC (2011) Produtos florestais não-madeiráveis e respectivo potencial de exploração sustentável, associados à remanescente florestal ripário do alto rio Paraná, Brasil. Acta Sci Biol Sci 33:451–462Google Scholar
  46. Vermerris W, Nicholson R (2006) Phenolic compound biochemistry, p. 267Google Scholar
  47. Vivot E, Munoz JD, Cruanes MC, Cruanes MJ, Tapia A, Hirschmann GS, Martínez E, Di Sapio O, Gattuso M, Zacchino S (2001) Inhibitory activity of xanthine-oxidase and superoxide scavenger properties of Inga verna subsp. affinis. Its morphological and micrographic characteristics. J Ethnopharmacol 76:65–71PubMedCrossRefGoogle Scholar
  48. Wu Q-S, Zou Y-N, He X-H, Luo P (2011) Arbuscular mycorrhizal fungi can alter some root characters and physiological status in Trifoliate orange (Poncirus trifoliate L. Raf.) seedlings. Plant Growth Regul 65:1–3CrossRefGoogle Scholar
  49. Zuanazi JAS, Montanha JA (2003) Flavonóides. In: Simões CMO. In: Schenkel EP, Gosmann G, Pallazzo DE, Mello JC, Mentz LA, Petrovick PR (eds) Farmacognosia: da planta ao medicamento, 3rd edn. UFRGS, Porto Alegre, cap.23 Google Scholar
  50. Zubek S, Mielcarek S, Turnau K (2012) Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 22:149–156PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Cleilton Santos Lima
    • 1
    • 2
    Email author
  • Maryluce Albuquerque da Silva Campos
    • 1
  • Fábio Sérgio Barbosa da Silva
    • 1
    • 2
  1. 1.Laboratório de Enzimologia e Fitoquímica Aplicada à Micologia – LEFAM/UPEUniversidade de PernambucoPetrolinaBrazil
  2. 2.Programa de Pós - Graduação em Biologia Celular e Molecular Aplicada – Instituto de Ciências Biológicas – ICB/UPEUniversidade de PernambucoRecifeBrazil

Personalised recommendations