Skip to main content
Log in

Effects of the phosphate-solubilizing fungus Talaromyces flavus on the development and efficiency of the Gigaspora rosea-Triticum aestivum symbiosis

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

This study analyzed the interaction between the phosphate-solubilizing fungus (PSF) Talaromyces flavus and the arbuscular mycorrhizal fungus (AMF) Gigaspora rosea in vitro, and whether the in vivo application of T. flavus was able to stimulate the efficiency of the symbiosis between G. rosea and wheat (Triticum aestivum). In vitro, the soluble chemical substances released by T. flavus promoted the development of pre-infective mycelium from germinating AMF spores, increasing the length of each branch and the number of branches. In vivo, the inoculation of T. flavus increased plant wet and dry weight of mycorrhizal plants, regardless of the P conditions. AMF root colonization was inhibited under high P conditions but was promoted by T. flavus inoculation. The inoculation of T. flavus also improved the symbiotic efficiency of mycorrhizal plants, measured as APA, and increased the total plant phosphate content and shoot:root phosphate ratio in mycorrhizal plants. To our knowledge, this is the first report where exudates produced by a PSF as T. flavus promote pre-infective development, root colonization and symbiotic efficiency of G. rosea in wheat. Finally, the role of T. flavus in rhizosphere interactions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amijee F, Tinker PB, Stribley DP (1989) The development of endomycorrhizal root systems. A detailed study of effects of soil phosphorus on colonization. New Phytol 11:435–446

    Article  Google Scholar 

  • Antoun H (2012) Beneficial microorganisms for the sustainable use of phosphates in agriculture. Proc Eng 46:62–67

    Article  CAS  Google Scholar 

  • Arshad M, Frankenberger WT Jr (1998) Plant growth-regulating substances in the rhizosphere: microbial production and functions. Adv Agron 62:46–51

    Google Scholar 

  • Aspray TJ, Jones E, Whipps JM, Bending GD (2006) Importance of mycorrhization helper bacteria cell density and metabolite localization for the Pinus sylvestrisLactarius rufussymbiosis. FEMS Microbiol Ecol 56:25–33

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, Azcón-Aguilar C, Azcón R (1997) Interactions between mycorrhizal fungi and rhizosphere microorganisms within the context of sustainable soil-plant systems. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell Science, Cambridge

    Google Scholar 

  • Brundrett M, Melville L, Peterson L (1994) Practical Methods in Mycorrhiza Research. Mycologue Publications, Waterloo

    Google Scholar 

  • Fracchia S, Godeas A, Scervino JM, Sampedro I, Ocampo JA, Garcia-Romero I (2003) Interaction between soil yeast Rhodotorula mucilaginosa and the arbuscular mycorrhizal fungi Glomus mosseae and Gigaspora rosea. Soil Biol Biochem 35:701–707

    Article  CAS  Google Scholar 

  • Fracchia S, Sampedro I, Scervino JM, Garcia Romera I, Godeas A, Ocampo JA (2004) Influence of saprobe fungi and its exudates on arbuscular mycorrhizal symbiosis. Symbiosis 36:169–182

    Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisisted. New Phytol 176:22–36

    Article  CAS  PubMed  Google Scholar 

  • Garg S, Bahl GS (2008) Phosphorus availability to maize as influenced by organic manures and fertilizer P associated phosphatase activity in soils. Bioresour Technol 99(13):5773–5777. doi:10.1016/j.biortech.2007.10.063

    Article  CAS  PubMed  Google Scholar 

  • Gerdemann JW (1955) Relation of a large soil-borne spore to phycomycetous mycorrhizal infections. Mycologia 47:619–632

    Article  Google Scholar 

  • Guillemin JP, Orozco MO, Gianinazzi-Pearson V, Gianinazzi S (1955) Influence of phosphate fertilization on fungal alkaline phosphatase and succinate dehydrogenase activities in arbuscular mycorrhiza of soybean and pineapple. Agric Ecosyst Environ 53:63–69

    Article  Google Scholar 

  • Hernández-Martínez M, Cetina-Alcalá VM, González-Chávez MC, Cervantes-Martínez CT (2006) Mycorrhizal Inoculation and its Effect on the Growth of Two Arboreous Leguminosae. TERRA Latinoam 24(1):65–73

    Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition, vol 22. Second edn. Commonwealth Bureau of Horticulture and Plantation Crops. Commun., East Malling, Maidstone, Kent. Tech.

  • Khan IA, Ahmad S, Mirza SN, Nizami M, Athar M, Shabbir SM (2007) Growth response of buffel grass (Cenchrus ciliaris) to phosphorus and mycorrhizal inoculation. Agric Conspec Sci 72(2):129–132

    Google Scholar 

  • Kovar JL, Pierzynski GM (2009) Methods of Phosphorus Analysis for Soils, Sediments, Residuals and Waters. Second edn. Southern Cooperative Series Kansas

  • Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rocks- ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16(5):248–254

    Article  PubMed  Google Scholar 

  • Lehr NA, Schrey SD, Bauer R, Hampp R, Tarkka MT (2007) Suppression of plant defense response by a mycorrhiza helper bacterium. New Phytol 174:892–903

    Article  CAS  PubMed  Google Scholar 

  • Mimura T, Sakano K, Shimmen T (1996) Studies on the distribution, re-translocation and homeostasis of inorganic phosphate in barley leaves. Plant Cell Environ 19:311–320

    Article  CAS  Google Scholar 

  • Mittal V, Singh O, Nayyar H, Kaur J, Tewari R (2008) Stimulatory effect of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biol Biochem 40(3):718–727. doi:10.1016/j.soilbio.2007.10.008

    Article  CAS  Google Scholar 

  • Mosse B (1962) The establishment of vesicular arbuscular mycorrhiza under aseptic conditions. J Gen Microbiol 27:509–520

    Article  CAS  PubMed  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nagahashi G, Douds DD (2011) The effects of hydroxyl fatty acids on the hyphal branching of germinated spores of AM fungi. Fungal Biol 115:351–358

    Article  CAS  PubMed  Google Scholar 

  • Naraghi L, Heydari A, Rezaee S, Razavi M, Afshari-Azad H (2010a) Biological control of Verticillium wilt of greenhouse cucumber by Talaromyces flavus. Phytopathol Mediterr 49:321–329

    Google Scholar 

  • Naraghi L, Heydari A, Rezaee S, Razavi M, Jahanifar H, Khaledi EM (2010b) Biological Control of Tomato Verticillium Wilt Desease by Talaromyces flavus. J Plant Prot Res 50(3):360–365

    Article  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  CAS  PubMed  Google Scholar 

  • Omar SA (1998) The role of rock-phosphate-solubilizing fungi and vesicular-arbuscular-mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J Microbiol Biotechnol 14:211–218

    Article  CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Richa G, Khosla B, Sudhakara Reddy M (2007) Impovement of maize plant growth by phosphate solubilizing fungi in rock phosphate amended soils. J Agric Sci 3(4):481–484

    Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Richardson AE (2007) Making microorganisms mobilize soil phosphorus. In: Velázquez E, Rodríguez-Barrueco C (eds) First International Meeting on Microbial Phosphate Solubilization, vol 102, Developments in Plant and Soil Sciences. Springer, Netherlands, pp 85–90

    Chapter  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Rodríguez A (2004) Hongos del suelo antagonistas de Sclerotinia sclerotiorum. Selección y estudio de potenciales agentes de biocontrol. Universidad de Buenos Aires, Argentina

    Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Sadzawka RA, M.A. Carrasco R, R. Demanet F, H. Flores P, R. Grez Z, M.L. Mora G, Neaman A (2007) Métodos de Análisis de Tejidos Vegetales. Instituto de Investigaciones Agropecuarias, 2nd Edition edn., Santiago, Chile

  • Scervino JM, Ponce MA, Erra-Bassells R, Ocampo JA, Godeas A (2005) Presymbiotic development of Gigaspora and Glomus genera in presence of flavonoids. Mycol Res 109:789–794

    Article  CAS  PubMed  Google Scholar 

  • Scervino JM, Sampedro I, Ponce MA, Rodriguez MA, Ocampo JA, Godeas A (2008) Rhodotorulic acid enhances root colonization of tomato plants by arbuscular mycorrhizal (AM) fungi due to its stimulatory effect on the pre-symbiotic stages of the AM fungi. Soil Biol Biochem 40:2474–2476

    Article  CAS  Google Scholar 

  • Scervino JM, Mesa MP, Della Mónica I, Recchi M, Sarmiento Moreno N, Godeas A (2010) Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biol Fert Soils 46(7):755–763. doi:10.1007/s00374-010-0482-8

    Article  CAS  Google Scholar 

  • Scervino JM, Papinutti VL, Godoy MS, Rodriguez MA, Della Monica I, Recchi M, Pettinari MJ, Godeas AM (2011) Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production. J Appl Microbiol 110(5):1215–1223. doi:10.1111/j.1365-2672.2011.04972.x

    Article  CAS  PubMed  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus Uptake by Plants: From Soil to Cell. Plant Physiol 116:447–453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwab SM, Menge JA, Leonard RT (1983) Quantitative and qualitative effects of phosphorus on extracts and exudates of sudangrass roots in relation to vesicular-arbuscular mycorrhiza formation. Plant Physiol 73:761–765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith SE, Gianinazzi-Pearson V (1990) Phosphate uptake and vesicular-arbuscular activity in mycorrhizal Allium cepa L.: effect of photon irradiance and phosphate nutrition. Aust J Plant Physiol 17:177–188

    Article  CAS  Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint J-P, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12:1290–1306

    Article  CAS  PubMed  Google Scholar 

  • Tisserant B, Gianinazzi-Pearson V, Gianinazzi S, Gollotte A (1993) In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol Res 97:245–250

    Article  CAS  Google Scholar 

  • Tisserant B, Gianinazzi S, Gianinazzi-Pearson V (1996) Relationships between lateral root order, arbuscular mycorrhiza development, and the physiological state of the symbiotic fungus in Platanus acerifolia. Can J Bot 74:1947–1955

    Article  Google Scholar 

  • Tran TT, Hashim SO, Gaber Y, Mamo G, Mattiasson B, Hatti-Kaul R (2011) Thermostable alkaline phytase from Bacillus sp. MD2: effect of divalent metals on activity and stability. J Inorg Biochem 105(7):1000–1007. doi:10.1016/j.jinorgbio.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  • Van Aarle IM, Rouhier H, Saito M (2002) Phosphatase activities of arbuscular mycorrhizal intraradical and extraradical mycelium, and their relation to phosphorus availability. Mycol Res 106(10):1224–1229. doi:10.1017/s0953756202006470

    Article  Google Scholar 

  • Vivas A, Marulanda A, Ruiz-Lozano JM, Barea JM, Azcón R (2003) Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13:249–256

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the following institutions: Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Agencia Nacional de Promoción Científica y Tecnológica (ANCYPT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. F. Della Mónica.

Additional information

I. F. Della Mónica and P. J. Stefanoni Rubio contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Della Mónica, I.F., Stefanoni Rubio, P.J., Cina, R.P. et al. Effects of the phosphate-solubilizing fungus Talaromyces flavus on the development and efficiency of the Gigaspora rosea-Triticum aestivum symbiosis. Symbiosis 64, 25–32 (2014). https://doi.org/10.1007/s13199-014-0299-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-014-0299-6

Keywords

Navigation