, Volume 60, Issue 3, pp 123–132 | Cite as

Hevea brasiliensis and Urtica dioica impact the in vitro mycorrhization of neighbouring Medicago truncatula seedlings

  • Tiffany Sosa-Rodriguez
  • Stéphane Declerck
  • Francoise Granet
  • Sylvie Gaurel
  • Els J. M. Van Damme
  • Hervé Dupré de BouloisEmail author


Hevea brasiliensis is a mycotrophic tree for which root colonization by arbuscular mycorrhizal fungi (AMF) under in vitro or pot culture conditions can take several weeks. The reason for this slow colonization is still unknown, but the exudation of antifungal compounds such as hevein by the roots may be one of the causes. Here, the root colonization of Medicago truncatula, a highly mycotrophic plant, was assessed after 12 days of growth in the extraradical mycelium network of the AMF Rhizophagus irregularis in close vicinity of H. brasiliensis plantlets or Urtica dioica seedlings (also known to synthesize antifungal compounds of the hevein family). We hypothesized that a negative impact on the root colonization of a M. truncatula seedling developing close to H. brasiliensis and U. dioica may give indirect proofs for the exudation of inhibitory molecules. The percentages of total root colonization of M. truncatula were 30.1 % lower in the presence of H. brasiliensis than in the control plants, and 29.1 % lower in presence of U. dioica. The abundance of arbuscules in the roots of M. truncatula was also lower in plants grown in presence of H. brasiliensis plantlets than in the control plants. Similarly, the succinate dehydrogenase and the phosphatase activities measured in the extraradical mycelium of R. irregularis were significantly lower in the presence of both plants, compared with the controls. No root colonization was observed in H. brasiliensis and U. dioica within the time-frame of the experiments. The low root colonization of M. truncatula when grown in the presence of rubber or stinging nettle suggested the exudation of diffusible molecules which could also explain the delayed root colonization of H. brasiliensis and the absence of colonization of U. dioica.


Arbuscular mycorrhizal fungi Hevea brasiliensis Urtica dioica Medicago truncatula Rhizophagus irregularis Extraradical mycelium network 



We are grateful to Dr. Marc-Philippe Carron of the UPR Systèmes de Pérennes, CIRAD (France) for his technical advices. Sosa-Rodriguez T. acknowledges the support of the “coopération au développement” PhD. Scholarship of the Université catholique de Louvain during this work.


  1. Bainard LD, Bainard JD, Newmaster SG, Klironomos JN (2011) Mycorrhizal symbiosis stimulates endoreduplication in angiosperms. Plant Cell Environ 34:1577–1585PubMedCrossRefGoogle Scholar
  2. Barto E, Antunes P, Stinson K, Koch A, Klironomos J, Cipollini D (2011) Differences in arbuscular mycorrhizal fungal communities associated with sugar maple seedlings in and outside of invaded garlic mustard forest patches. Biol Invasions 13:2755–2762CrossRefGoogle Scholar
  3. Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13:492–498PubMedCrossRefGoogle Scholar
  4. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48. doi: 10.1038/ncomms1046 PubMedCrossRefGoogle Scholar
  5. Broekaert WF, Van Parijs J, Leyns F, Joos H, Peumans WJ (1989) A chitin-binding lectin from stinging nettle rhizomes with antifungal properties. Science 245:1100–1102PubMedCrossRefGoogle Scholar
  6. Brundrett M (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304CrossRefGoogle Scholar
  7. Brundrett M (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:473–495PubMedCrossRefGoogle Scholar
  8. Brundrett M (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77CrossRefGoogle Scholar
  9. Cranenbrouck S, Voets L, Bivort C, Renard L, Stullu DG, Declerck S (2005) Methodologies for in vitro cultivation of arbuscular mycorrhizal fungi with root organs. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Berlin, pp 341–348CrossRefGoogle Scholar
  10. Declerck S, Strullu DG, Plenchette C (1998) Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia 90:579–585CrossRefGoogle Scholar
  11. Doner LW, Bécard G (1991) Solubilization of gellan gels by chelation of cations. Biotechnol Tech 5:25–28CrossRefGoogle Scholar
  12. Fontenla S, García-Romera I, Ocampo JA (1999) Negative influence of non-host plants on the colonization of Pisum sativum by the arbuscular mycorrhizal fungus Glomus mosseae. Soil Biol Biochem 31:1591–1597CrossRefGoogle Scholar
  13. Gallou A, De Jaeger N, Cranenbrouck S, Declerck S (2010) Fast track in vitro mycorrhization of potato plantlets allow studies on gene expression dynamics. Mycorrhiza 20:201–207PubMedCrossRefGoogle Scholar
  14. Gidrol X, Chrestin H, Tan HL, Kush A (1994) Hevein, a lectin-like protein from Hevea brasiliensis (rubber tree) is involved in the coagulation of latex. J Biol Chem 269:9278–9283PubMedGoogle Scholar
  15. Giovannetti M, Sbrana C (1998) Meeting a non-host: the behaviour of AM fungi. Mycorrhiza 8:123–130CrossRefGoogle Scholar
  16. Helgason T, Merryweather JW, Young JPW, Fitter AH (2007) Specificity and resilience in the arbuscular mycorrhizal fungi of a natural woodland community. J Ecol 95:623–630CrossRefGoogle Scholar
  17. Ikram A, Mahmud A, Ghani M, Ibrahim M, Zainal A (1992) Field nursery inoculation of Hevea brasiliensis Muell. Arg. seedling rootstock with vesicular-arbuscular mycorrhizal (VAM) fungi. Plant Soil 145:231–236CrossRefGoogle Scholar
  18. Ikram A, Mahmud AW, Othman H (1993) Growth response of Hevea brasiliensis seedlings rootstock to inoculation with vesicular- arbuscular mycorrhizal fungal species in steam-sterilised soil. J Nat Rubber Res 8:231–242Google Scholar
  19. Kanokwiroon K, Teanpaisan R, Wititsuwannakul D, Hooper AB, Wititsuwannakul R (2008) Antimicrobial activity of a protein purified from the latex of Hevea brasiliensis on oral microorganisms. Mycoses 51:301–307PubMedCrossRefGoogle Scholar
  20. Kloppholz S, Kuhn H, Requena N (2011) A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 21:1204–1209PubMedCrossRefGoogle Scholar
  21. Koffi MC, Vos C, Draye X, Declerck S (2012) Effects of Rhizophagus irregularis MUCL 41833 on the reproduction of Radopholus similis in banana plantlets grown under in vitro culture conditions. Mycorrhiza 1–10. doi: 10.1007/s00572-012-0467-6
  22. Lardet L, Martin F, Dessailly F, Carron MP, Montoro P (2007) Effect of exogenous calcium on post-thaw growth recovery and subsequent plant regeneration of cryopreserved embryogenic calli of Hevea brasiliensis (Müll. Arg.). Plant Cell Rep 26:559–569PubMedCrossRefGoogle Scholar
  23. Laukkanen ML, Mäkinen-Kiljunen S, Isoherranen K, Haahtela T, Söderlund H, Takkinen K (2003) Hevein-specific recombinant IgE antibodies from human single-chain antibody phage display libraries. J Immunol Methods 278:271–281PubMedCrossRefGoogle Scholar
  24. Martin MN (1991) The latex of Hevea brasiliensis contains high levels of both chitinases and chitinases/lysozymes. Plant Physiol 95:469–476PubMedCrossRefGoogle Scholar
  25. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swanand JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501CrossRefGoogle Scholar
  26. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763PubMedCrossRefGoogle Scholar
  27. Peumans WJ, De Ley M, Broekaert WF (1984) An unusual lectin from stinging nettle (Urtica dioica) rhizomes. FEBS Lett 177:99–103CrossRefGoogle Scholar
  28. Renker C, Blanke V, Buscot F (2005) Diversity of arbuscular mycorrhizal fungi in grassland spontaneously developed on area polluted by a fertilizer plant. Environ Pollut 135:255–266PubMedCrossRefGoogle Scholar
  29. Roberts KJ, Anderson RC (2001) Effect of garlic mustard [Alliaria petiolata (Beib. Cavara & Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi. Am Midl Nat 146:146–152CrossRefGoogle Scholar
  30. Saito M (1995) Enzyme activities of the internal hyphae and germinated spores of an arbuscular mycorrhizal fungus, Gigaspora margarita Becker & Hall. New Phytol 129:425–431CrossRefGoogle Scholar
  31. Schwob I, Ducher M, Coudret A (2000) An arbuscular mycorrhizal fungus (Glomus mosseae) induces a defence-like response in rubber tree (Hevea brasiliensis) roots. J Plant Physiol 156:284–287CrossRefGoogle Scholar
  32. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, LondonGoogle Scholar
  33. Sosa-Rodriguez T, Dupré de Boulois H, Granet F, Gaurel S, Melgarejo LM, Carron MP, Declerck S (2013) In vitro mycorrhization of the rubber tree Hevea brasiliensis Müll. Arg. In Vitro Cell Dev-Pl 49:207–215Google Scholar
  34. StatSoft Inc (2001) Statistica® release 6. StatSoft Inc, TulsaGoogle Scholar
  35. Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC, Hallett SG, Prati D, Klironomos JN (2006) Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol 4:727–731CrossRefGoogle Scholar
  36. van Aarle IM, Rouhier H, Saito M (2002) Phosphatase activities of arbuscular mycorrhizal intraradical and extraradical mycelium, and their relation to phosphorus availability. Mycol Res 106:1224–1229CrossRefGoogle Scholar
  37. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  38. Van Parijs J, Broekaert WF, Goldstein IJ, Peumans WJ (1991) Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta 183:258–264CrossRefGoogle Scholar
  39. Vierheilig H, Bago B (2005) Host and non-host impact on the physiology of the AM symbiosis. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Berlin, pp 139–158CrossRefGoogle Scholar
  40. Vierheilig H, Alt M, Mäder P, Boller T, Wiemken A (1995) Spreading of Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus, across the rhizosphere of host and non-host plants. Soil Biol Biochem 27:1113–1115CrossRefGoogle Scholar
  41. Vierheilig H, Iseli B, Alt M, Raikhel N, Wiemken A, Boller T (1996) Resistance of Urtica dioica to mycorrhizal colonization: a possible involvement Urtica dioica agglutinin. Plant Soil 183:131–136CrossRefGoogle Scholar
  42. Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007PubMedGoogle Scholar
  43. Vierheilig H, Lerat S, Piché Y (2003) Systemic inhibition of arbuscular mycorrhiza development by root exudates of cucumber plants colonized by Glomus mosseae. Mycorrhiza 13:167–170PubMedCrossRefGoogle Scholar
  44. Vierheilig H, Schweiger P, Brundrett M (2005) An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol Plant 125:393–404Google Scholar
  45. Voets L, Dupré de Boulois H, Renard L, Strullu DG, Declerck S (2005) Development of an autotrophic culture system for the in vitro mycorrhization of potato plantlets. FEMS Microbiol Lett 248:111–118PubMedCrossRefGoogle Scholar
  46. Voets L, de la Providencia IE, Fernandez K, IJdo M, Cranenbrouck S, Declerck S (2009) Extraradical mycelium network of arbuscular mycorrhizal fungi allows fast colonization of seedlings under in vitro conditions. Mycorrhiza 19:346–356CrossRefGoogle Scholar
  47. Yun KW, Choi SK (2002) Mycorrhizal colonization and plant growth affected by aqueous extract of Artemisia princeps var. orientalis and two phenolic compounds. J Chem Ecol 28:353–362PubMedCrossRefGoogle Scholar
  48. Zocco D, van Aarle IM, Oger E, Lanfranco L, Declerck S (2011) Fenpropimorph and fenhexamid impact phosphorus translocation by arbuscular mycorrhizal fungi. Mycorrhiza 21:363–374PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Tiffany Sosa-Rodriguez
    • 1
  • Stéphane Declerck
    • 1
  • Francoise Granet
    • 2
  • Sylvie Gaurel
    • 2
  • Els J. M. Van Damme
    • 3
  • Hervé Dupré de Boulois
    • 1
    Email author
  1. 1.Université Catholique de Louvain, Earth and Life Institute, Applied Microbiology, MycologyLouvain-la-NeuveBelgium
  2. 2.Manufacture Française des Pneumatiques MICHELIN Place des Carmes-DéchauxClermont-Ferrand CEDEXFrance
  3. 3.Department of Molecular BiotechnologyGhent UniversityGhentBelgium

Personalised recommendations