, Volume 60, Issue 3, pp 115–122 | Cite as

Genotypic variation of nodules’ enzymatic activities in symbiotic nitrogen fixation among common bean (Phaseolus vulgaris L.) genotypes grown under salinity constraint

  • Mustapha FaghireEmail author
  • Farissi Mohamed
  • Khadijattou Taoufiq
  • Rachid Fghire
  • Adnane Bargaz
  • Btissam Mandri
  • Khalid Oufdou
  • Amenc Laury
  • Jean-Jacques Drevon
  • Cherki Ghoulam


The effect of salt stress, under glasshouse conditions, was studied on plant biomass, nodulation, and activities of acid phosphatases (APase, EC and trehalose 6-phosphate phosphatase (TPP, EC in the symbiosis common bean (Phaseolus vulgaris L.)-rhizobia nodules. Four common bean recombinant inbred lines (147, 115, 104 and 83) were separately inoculated, with CIAT 899 or RhM11 strains and grown in hydroaeroponic culture. Two NaCl levels (0 and 25 mM NaCl plant−1 week−1 corresponding, respectively, to the control and the salt treatment) were applied and the culture was assessed during 42 days after their transplantation. The results showed that the nodulation of these lines was not affected by salinity except for the line 83 inoculated with CIAT 899, whose nodule dry weight decreased by 48.24 % compared with the corresponding controls. For the other symbiotic combinations, shoot and root biomasses were not significantly affected by salt constraint. Salinity stress generally reduced acid phosphatise and trehalose phosphate phosphatase activities in nodules that were less affected in plants inoculated with RhM11. Based on our data, it appears that nodule phosphatase activity may be involved in salinity tolerance in common beans and the levels of salt tolerance depend principally on specific combination of the rhizobial strain and the host cultivar.


Common bean Nodulation Salinity constraint Acid phosphatase Trehalose phosphate phosphatase RT-PCR in situ 



This work was financially supported by PRAD project N° 06-08. The authors wish to thank Hélène Vailhe (INRA, Montpellier) for her technical assistance.


  1. Adelson PA, Claude P, Drevon JJ (2008) Phosphatase and phytase activities in nodules of common bean genotypes at different levels of phosphorus supply. Plant Soil 312:129–138CrossRefGoogle Scholar
  2. Almeselmani M, Deshmukh PS, Sairam RK, Kushwaha SR, Singh TP (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Sci 171:382–388PubMedCrossRefGoogle Scholar
  3. Bargaz A, Ghoulam C, Amenc L, Lazali M, Faghire M, Abadie J, Drevon JJ (2012) A phosphoenol pyruvate phosphatase transcript is induced in the root nodule cortex of Phaseolus vulgaris under phosphorus deficiency. J Exp Bot. doi: 10.1093/jxb/err313 PubMedGoogle Scholar
  4. Cabib E, Leloir L (1958) The biosynthesis of trehalose-6-phosphate. J Biol Chem 231:259–275PubMedGoogle Scholar
  5. Crowe J, Crowe L, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703PubMedCrossRefGoogle Scholar
  6. Delgado MJ, Garrido JM, Ligero F, Lluch C (1993) Nitrogen fixation and carbon metabolism by nodules and bacteroids of pea plants under sodium chloride. Physiol Plant 89:824–829CrossRefGoogle Scholar
  7. Esfandiari E, Shekari F, Shekari F, Esfandiari M (2007) The effect of salt stress on antioxidant enzymes activity and lipid peroxidation on the wheat seedling. Not Bot Hort Agrobot Cluj 35:48–56Google Scholar
  8. Faghire M, Bargaz A, Farissi M, Palma F, Mandri B, Lluch C, Tejera García NA, Herrera-Cervera JA, Oufdou K, Ghoulam C (2011) Effect of salinity on nodulation, nitrogen fixation and growth of common bean (Phaseolus vulgaris) inoculated with rhizobial strains isolated from the Haouz region of Morocco. Symbiosis 55:69–75CrossRefGoogle Scholar
  9. Georgiev GI, Atkins CA (1993) Effects of salinity on N2 fixation, nitrogen metabolism and export and diffusive conductance of cowpea root nodules. Symbiosis 15:239–255Google Scholar
  10. Jaleel CA, Gopi R, Manivannan P, Panneerselvam R (2007) Antioxidative potentials as a protective mechanism in Catharanthusroseus (L.) G. Don. Plants under salinity stress. Turk J Bot 31:245–251Google Scholar
  11. Jonas NC, Nkonya EM, Mairura FS, Justina NC, Akinnifesi FK (2010) Biological nitrogen fixation and socioeconomic factors for legume production in sub-Saharan Africa. Agron Sustain Dev. doi: 10.1051/agro/2010004 Google Scholar
  12. Kouas S, Labidine N, Debez A, Abdelly C (2005) Effect of P on nodule formation and N fixation in bean. Agron Sustain Dev 25:389–393CrossRefGoogle Scholar
  13. Lauchli A (1984) Salt exclusion: an adaptation of legume for crops and pastures under saline conditions. In: Staples RC, Toenniessen GH (eds) Salinity tolerance in plants. Strategies for crop improvement. John Wiley and Sons, New York, pp 171–187Google Scholar
  14. Lopez M, Lluch C (2012) Trehalose and abiotic stress tolerance. Abiotic stress responses in plants. 253–265. doi: 10.1007/978-1-4614-0634-1_14
  15. Lopez M, Herrera CJA, Iribarne C, Tejera NA, Lluch C (2006) Growth and nitrogen fixation in Lotus japonicus and Medicagotruncatula under NaCl stress: nodule carbon metabolism. J Plant Physiol 165:641–650CrossRefGoogle Scholar
  16. Lopez M, Tejera NA, Iribarne C, Lluch C, Herrera CJA (2008) Trehalose and trehalase in root nodules of Medicagotruncatula and Phaseolus vulgaris in response to salt stress. Physiol Plant 134:575–582PubMedCrossRefGoogle Scholar
  17. Mandri B, Drevon JJ, Bargaz A, Oufdou K, Faghire M, Plassard C, Payre H, Ghoulam C (2012) Interactions between common bean genotypes and rhizobia strains isolated from moroccan soils for growth, phosphatase and phytase activities under phosphorus deficiency conditions. J Plant Nutr 35:1477–1490CrossRefGoogle Scholar
  18. Molina C, Zaman-Allah M, Khan F et al (2011) The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE. BMC Plant Biol. doi: 10.1186/1471-2229-11-31 PubMedGoogle Scholar
  19. Ohno T, Zibilske LM (1991) Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci Soc Am J 55:892–895CrossRefGoogle Scholar
  20. Olmos E, Hellin E (1997) Cytochemical localization of ATPase plasma membrane and acid phosphatase by cerium based in a salt-adapted cell line of Pisumsativum. J Exp Bot 48:1529–1535Google Scholar
  21. Padilla L, Kramer R, Stephanopoulos G, Agosin E (2004) Overproduction of trehalose: heterologous expression of Escherichia coli trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in Corynebacteriumglutamicum. Appl Environ Microbiol 70:370–376PubMedCrossRefGoogle Scholar
  22. Penheiter AR, Duff SMG, Sarath G (1997) Soybean root nodule acid phosphatase. Plant Physiol 114:597–604PubMedCrossRefGoogle Scholar
  23. Sairam RK, Tyagi A (2004) Physiological and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–420Google Scholar
  24. Soussi M, Ocana A, Lluch C (1998) Effect of salt stress on growth, photosynthesis and nitrogen fixation in chickpea (CicerarietinumL.). J Exp Bot 325:1329–1337Google Scholar
  25. Soussi M, Lluch C, Ocana A (1999) Comparative study of nitrogen fixation and carbon metabolism in two chick-pea (Cicerarietinum L.) cultivars under salt stress. J Exp Bot 50:1701–1708Google Scholar
  26. Tang C, Hinsinger PJ, Jaillard B, Rengelz Z, Drevon JJ (2001) Effect of phosphorus deficiency on the growth, symbiotic N2 fixation and proton release by two bean (Phaseolus vulgaris) genotypes. Agronomie 21:683–689CrossRefGoogle Scholar
  27. Tejera GNA, Olivera M, Iribarne C, Lluch C (2004) Partial purification and characterization of a non-specific acid phosphatase in leaves and root nodules of Phaseolus vulgaris. Plant Physiol Biochem 42:585–591CrossRefGoogle Scholar
  28. Vadez V, Lasso JH, Beck DP, Drevon JJ (1999) Variability of N2-fixation in common bean (Phaseolus vulgaris L.) under P-deficiency is related to P use efficiency. Euphytica 106:231–242CrossRefGoogle Scholar
  29. Van Aarle IM, Viennois G, Amenc LK, Tatry MV, Luu DT, Plassard C (2007) Fluorescent in situ RT-PCR to visualise the expression of a phosphate transporter gene from an ectomycorrhizal fungus. Mycorrhiza 17:487–494PubMedCrossRefGoogle Scholar
  30. Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:427–447CrossRefGoogle Scholar
  31. Wiemken A (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Anton Leeuw J Gen Microbiol 58:209–217CrossRefGoogle Scholar
  32. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mustapha Faghire
    • 1
    • 3
    Email author
  • Farissi Mohamed
    • 2
  • Khadijattou Taoufiq
    • 3
  • Rachid Fghire
    • 3
  • Adnane Bargaz
    • 6
  • Btissam Mandri
    • 2
  • Khalid Oufdou
    • 4
  • Amenc Laury
    • 5
  • Jean-Jacques Drevon
    • 5
  • Cherki Ghoulam
    • 2
  1. 1.Department of BiologyFaculty of Sciences, Ibn Zohr UniversityAgadirMorocco
  2. 2.Faculté des Sciences et Techniques Guéliz-MarrakechEquipe de Biotechnologie Végétale et Agrophysiologie des SymbiosesMarrakechMorocco
  3. 3.Centre des Études et Recherches sur l’Espace Marocain (CEREM)Province TahanaouteMorocco
  4. 4.Faculté des Sciences-SemlaliaLaboratoire de Biologie et de Biotechnologie des MicroorganismesMarrakechMorocco
  5. 5.INRA-Montpellier-SupAgro, UMR1222, Rhizosphère et SymbiosesMontpellierFrance
  6. 6.Department of Biosystems and TechnologySwedish University of Agricultural SciencesAlnarpSweden

Personalised recommendations