, Volume 58, Issue 1–3, pp 149–159 | Cite as

Relationships between pasture legumes, rhizobacteria and nodule bacteria in heavy metal polluted mine waste of SW Sardinia

  • Vera I. Safronova
  • Giovanna Piluzza
  • Nadezhda Y. Zinovkina
  • Anastasiia K. Kimeklis
  • Andrey A. Belimov
  • Simonetta Bullitta


Local populations of the pasture legumes Astragalus hamosus, Lotus edulis, Lotus ornithopodioides, Medicago ciliaris and Scorpiurus muricatus from heavy metal polluted and unpolluted sites in Sardinia were compared for tolerance to Zn, Cd and Pb in hydroponics. Tolerance of plants to heavy metals varied significantly depending on the species, origin of the population and metal. The species L. edulis, L. ornithopodioides and M. ciliaris possessed higher metal tolerance and were used in a pot experiment with Zn, Cd and Pb polluted mine waste. Seeds were inoculated with the metal tolerant plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 or/and with the corresponding symbiotic nodule bacteria containing the enzyme 1-aminocyclopropane-1-carboxylate deaminase. Co-inoculation with the bacteria had synergistic and additive effects on nodule number, root growth and uptake of elements (N, P, Ca, Mg, Na, Mn, Zn and Pb) in shoots of L. edulis and L. ornithopodioides. Shoot biomass and uptake of K, Fe and Cd was increased by a combined inoculation of L. edulis. The ratio between shoot and root contents of Pb in L. ornithopodioides was above 1, suggesting a characteristic trait of hyperaccumulating species. The results suggest that the development of metal tolerant and efficient plant-bacteria systems might be useful for phytostabilization and revegetation of mine wastes.


ACC deaminase Heavy metals PGPR Rhizobia Rhizosphere Phytoremediation 



This work was supported by the Italy-Russia Commission for Science and Technology Cooperation (T4 AGR 2001-2, 3N60AM7 2003-4), the Russian Foundation of Basic Research (02-04-4973-a, 06-04-49486-a, 09-04-01614-a) and the Ministry of Education and Science of Russian Federation (GK 16.552.11.7085). We are grateful to Filippo Virdis (DESA) and Mario Deroma (DIT) of Sassari University (I) and Maddalena Sassu (ISPAAM uos Sassari, I) for elemental analysis, Dr. E.P. Chizhevskaya for primer design of acdS genes and Prof. B.R. Glick for providing the strain R. hedysari Rhh.


  1. Ahmad I, Hayat S, Ahmad A, Inam A, Samiullah (2001) Metal and antibiotic resistance traits in Bradyrhizobium sp. (cajanus) isolated from soil receiving oil refinery wastewater. World J Microbiol Biochem 17:379–384CrossRefGoogle Scholar
  2. Azcón R, Medina A, Roldán A, Biró B, Vivas A (2009) Significance of treated agrowaste residue and autochthonous inoculates (arbuscular mycorrhizal fungi and Bacillus cereus) on bacterial community structure and phytoextraction to remediate soils contaminated with heavy metals. Chemosphere 75:327–334PubMedCrossRefGoogle Scholar
  3. Belimov AA, Wenzel WW (2009) The role of rhizosphere microorganisms in heavy metal tolerance of higher plants. Asp Appl Biol 98:81–90Google Scholar
  4. Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterisation of plant growth-promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652PubMedCrossRefGoogle Scholar
  5. Belimov AA, Kunakova AM, Safronova VI, Stepanok VV, Yudkin LY, Alekseev YV, Kozhemyakov AP (2004) Employment of rhizobacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium. Microbiologiya 73:99–106Google Scholar
  6. Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250CrossRefGoogle Scholar
  7. Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing ACC deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181:413–423PubMedCrossRefGoogle Scholar
  8. Boni M, Costabile S, De Vivob B, Gasparrini M (1999) Potential environmental hazard in the mining district of southern Iglesiente (SW Sardinia, Italy). J Geochem Explor 67:417–430CrossRefGoogle Scholar
  9. Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–258PubMedCrossRefGoogle Scholar
  10. Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245PubMedCrossRefGoogle Scholar
  11. Chaintreuil C, Rigault F, Moulin L, Jaffre T, Fardoux J, Giraud E, Dreyfus B, Bailly X (2007) Nickel resistance determinants in Bradyrhizobium strains from nodules of the endemic new Caledonia legume Serianthes calycina. Appl Environ Microbiol 73:8018–8022PubMedCrossRefGoogle Scholar
  12. Chaney RL, Malik M, Li YM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284PubMedCrossRefGoogle Scholar
  13. Chen W-M, Wu C-H, James EK, Chang J-S (2008) Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J Hazard Mater 151:364–371PubMedCrossRefGoogle Scholar
  14. Cottenie A (1980) Soil and plant testing as a basis of fertilizer recommendations. FAO Soils Bulletin 38/2. FAO, RomeGoogle Scholar
  15. Depret G, Laguerre G (2008) Plant phenology and genetic variability in root and nodule development strongly influence genetic structuring of Rhizobium leguminosarum biovar viciae populations nodulating pea. New Phytol 179:224–235PubMedCrossRefGoogle Scholar
  16. Duan J, Muller KM, Charles TC, Glick BR (2009) 1-amynocyclopropane-1-carboxylate (ACC) deaminase genes in Rhizobia from Southern Saskatchewan. Microb Ecol 57:423–436PubMedCrossRefGoogle Scholar
  17. Fearn JC, LaRue TA (1991) Ethylene inhibitors restore nodulation to sym5 mutants of Pisum sativum cv Sparkle. Plant Physiol 96:239–244PubMedCrossRefGoogle Scholar
  18. Gamalero E, Linqua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514PubMedCrossRefGoogle Scholar
  19. Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242CrossRefGoogle Scholar
  20. Guinel FC, Geil RD (2002) A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses. Can J Bot 80:695–720CrossRefGoogle Scholar
  21. Gupta DK, Rai UN, Sinha S, Tripathi RD, Nautiyal BD, Rai P, Inouhe M (2004) Role of Rhizobium (CA-1) inoculation in increasing growth and metal accumulation in Cicer arietinum L. growing under fly-ash stress condition. Bull Environ Contam Toxicol 73:424–431PubMedCrossRefGoogle Scholar
  22. Hontzeas N, Richardson AO, Belimov AA, Safronova VI, Abu-Omar MM, Glick BR (2005) Evidence for horizontal transfer of 1-aminocyclopropane-1-carboxylate deaminase genes. Appl Environ Microbiol 71:7556–7558PubMedCrossRefGoogle Scholar
  23. Hungria M, Bohrer TRJ (2000) Variability of nodulation and dinitrogen fixation capacity among soybean cultivars. Biol Fertil Soils 31:45–52CrossRefGoogle Scholar
  24. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338PubMedCrossRefGoogle Scholar
  25. Khan AG (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19CrossRefGoogle Scholar
  26. Klonowska A, Chaintreuil C, Tisseyre P, Miché L, Melkonian M, Ducousso M, Laguerre G, Brunel B, Moulin L (2012) Biodiversity of Mimosa pudica rhizobial symbionts (Cupriavidus taiwanensis, Rhizobium mesoamericanum) in New Caledonia and their adaptation to heavy metal-rich soils. FEMS Microbiol Ecol 81:618–635PubMedCrossRefGoogle Scholar
  27. Köhl KJ (1997) Do Armeria maritime (Mill.) Willd. ecotypes from metalliferous soils and non-metalliferous soils differ in growth response under Zn stress? A comparison by a new artificial soil method. J Exp Bot 48:1959–1967Google Scholar
  28. Ma W, Guinel FC, Glick BR (2003a) Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402PubMedCrossRefGoogle Scholar
  29. Ma W, Sebestianova SB, Sebestian J, Burd GI, Guinel FC, Glick BR (2003b) Prevalence of 1-aminocyclopropane-1-1carboxylate deaminase in Rhizobium spp. Antonie Van Leeuwenhoek 83:285–291PubMedCrossRefGoogle Scholar
  30. Ma W, Charles TC, Glick BR (2004) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 70:5891–5897PubMedCrossRefGoogle Scholar
  31. MiPAF- Ministero delle Politiche Agricole e Forestali (2000) Metodi di Analisi Chimica del Suolo. Coordinatore Pietro Violante. Franco Angeli Editore, RomaGoogle Scholar
  32. Nascimento FX, Brigido C, Glick BR, Oliveira S (2012) ACC deaminase genes are conserved among Mesorhizobium species able to nodulate the same host plant. FEMS Microbiol Lett 336:26–37PubMedCrossRefGoogle Scholar
  33. Novák K (2010) On the efficiency of legume supernodulating mutants. Ann Appl Biol 157:321–342CrossRefGoogle Scholar
  34. Nukui N, Minamisawa K, Ayabe SI, Aoki T (2006) Expression of the 1-aminocyclopropane-1-carboxylic acid deaminase gene requires symbiotic nitrogen-fixing regulator gene nifA2 in Mesorhizobium loti MAFF303099. Appl Environ Microbiol 72:4964–4969PubMedCrossRefGoogle Scholar
  35. Pennazio S, Roggero P (1992) Effect of cadmium and nickel on ethylene biosynthesis in soybean. Biol Plant 34:345–349CrossRefGoogle Scholar
  36. Pugh RE, Dick DG, Freeden AL (2002) Heavy metal (Pb, Zn, Cd, Fe, and Cu) contents of plant foliage near the Anvil range lead/zinc mine, Faro, Yukon Territory. Ecotoxicol Environ Saf 52:273–279PubMedCrossRefGoogle Scholar
  37. Reeves RD, Schwartz C, Morel JL, Edmondson J (2001) Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int J Phytorem 3:145–172CrossRefGoogle Scholar
  38. Roosens N, Verbruggen N, Meerts P, Ximenez-Embun P, Smith JAC (2003) Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe. Plant Cell Environ 26:1657–1672CrossRefGoogle Scholar
  39. Safronova VI, Piluzza G, Belimov AA, Bullitta S (2004) Phenotypic and phylogenetic analysis of rhizobia isolated from pasture legumes native of Sardinia and Asinara island. Antonie Van Leeuwenhoek 85:115–127PubMedCrossRefGoogle Scholar
  40. Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42:267–272CrossRefGoogle Scholar
  41. Safronova VI, Piluzza G, Bullitta S, Belimov AA (2011) Use of legume-microbe symbioses for phytoremediation of heavy metal polluted soils: Advantages and potential problems. In: Golubev IA (ed) Handbook for phytoremediation. Nova, USA, pp 443–470Google Scholar
  42. Sahi SV, Bryant NL, Sharma NC, Singh SR (2002) Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ Sci Technol 36:4676–4680PubMedCrossRefGoogle Scholar
  43. Saleh SS, Glick BR (2001) Involvement of gasS and pros in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and UW4. Can J Microbiol 47:698–705PubMedGoogle Scholar
  44. Stiens M, Schneiker S, Keller M, Kuhn S, Puhler A, Schluter A (2006) Sequence analysis of the 144-kilobase accessory plasmid pSmeSM11a, isolated from a dominant Sinorhizobium meliloti strain identified during a long-term field release experiment. Appl Environ Microbiol 72:3662–3672PubMedCrossRefGoogle Scholar
  45. Tank N, Saraf M (2009) Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. J Basic Microbiol 49:195–204PubMedCrossRefGoogle Scholar
  46. Tittabutr P, Awaya JD, Li QX, Borthakur D (2008) The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala. Syst Appl Microbiol 31:141–150PubMedCrossRefGoogle Scholar
  47. Tripathi M, Munot HP, Shouche Y, Meyer JM, Goel R (2005) Isolation and functional characterization of siderophore-producing lead- and cadmium-resistant Pseudomonas putida KNP9. Curr Microbiol 50:233–237PubMedCrossRefGoogle Scholar
  48. Vivas A, Vörös I, Biró B, Campos E, Barea JM, Azcón R (2003) Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels. Environ Pollut 126:179–189PubMedCrossRefGoogle Scholar
  49. Vivas A, Biró B, Ruíz-Lozano JM, Barea JM, Azcón R (2006) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62:1523–1533PubMedCrossRefGoogle Scholar
  50. Wani PA, Khan MS, Zaidi A (2008) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30:159–163PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Vera I. Safronova
    • 1
  • Giovanna Piluzza
    • 2
  • Nadezhda Y. Zinovkina
    • 1
  • Anastasiia K. Kimeklis
    • 1
  • Andrey A. Belimov
    • 1
  • Simonetta Bullitta
    • 2
  1. 1.All-Russia Research Institute for Agricultural MicrobiologySaint-PetersburgRussian Federation
  2. 2.ISPAAM-CNR u.o.s. SassariLi Punti-SassariItaly

Personalised recommendations