, Volume 56, Issue 2, pp 87–95 | Cite as

Monoxenic nodulation process of Acacia mangium (Mimosoideae, Phyllodineae) by Bradyrhizobium sp

  • Marie-Mathilde Perrineau
  • Antoine Galiana
  • Sergio M. de Faria
  • Gilles Bena
  • Robin Duponnois
  • Paul Reddell
  • Yves PrinEmail author


Acacia mangium Willd., a native tree in Australia and Papua New Guinea, has been introduced to countries in Asia and South America where plantations have been established that cover several hundred thousand ha. The present study investigated the early stages of the nodulation process in A. mangium using an homologous Australian Bradyrhizobium strain. After optimizing the axenic nodulation, histological and cytological studies were conducted using light and electron microscopy. These documented the proliferation of Bradyrhizobium, the lysis of mucilage at the root surface, root hair deformation and initiation, as well as the development and growth of multiple infection threads. A belt of tannin-filled cells was shown to surround the central nodular fixation zone. The nodules were of the indeterminate type and the bacteroids had a rod shape, without size modification and with few polyhydroxybutyrate (PHB) granules. Several bacteroids can share the same symbiosome. A. mangium exhibits both classical and novel features in its nodulation.


Nitrogen fixation Root hair Infection threads Indeterminate nodule 



This work was supported by Centre de coopération Internationale pour la Recherche Agronomique et le Développement (CIRAD) (PhD grant to M.M.P.). This work was partially funded by the French Ministère de l’Environnement et du Développement Durable (Programme Ecofor/Ecosystèmes Tropicaux).


  1. Bartholomew JW, Cantwell GE, Clark G, Coalson RE, Dougherty WJ, Kasten FH, Mohr JL, Phillips RL, Schneider H, Spicer SS (1981) In: Clark C. (ed) Staining procedures. Fourth Edition. William & Wilkins. Baltimore Google Scholar
  2. Bonaldi K, Gargani D, Prin Y, Fardoux J, Gully D, Nouwen N, Goormachtig S, Giraud E (2011) Nodulation of Aeschynomene afraspera and A. indica by photosynthetic Bradyrhizobium sp. strain ORS285: the Nod-dependent versus the Nod-independent symbiotic interaction. Mol Plant Microbe Interact 24:1359–1371PubMedCrossRefGoogle Scholar
  3. Brewin NJ (2004) Plant cell Wall remodelling in the rhizobium-legume symbiosis. Crit Rev Plant Sci 23:293–316CrossRefGoogle Scholar
  4. Carruthers J, Robin L (2010) Taxonomic imperialism in the battlesfor Acacia: Identity and science in South Africa and Australia. Trans Roy Soc South Africa 65:48–64CrossRefGoogle Scholar
  5. Chandler MR (1978) Some observations on infection of Arachis hypogaea L. by Rhizobium. J Exp Bot 29:749–755CrossRefGoogle Scholar
  6. Chen WM, James EK, Prescott AR, Kierans M, Sprent JI (2003) Nodulation of Mimosa spp. by the ß-Proteobacterium Ralstonia taiwanensis. Mol Plant Microbe Interact 16:1051–1061PubMedCrossRefGoogle Scholar
  7. Clapp JP, Mansur I, Dodd JC, Jeffries P (1997) Ribotyping of rhizobia nodulating Acacia mangium and Paraserianthes falcataria from different geographical areas in Indonesia using PCR-RFLP-SSCP (PRS) and sequencing. Environ Microbiol 3:273–280CrossRefGoogle Scholar
  8. Corby HDL (1988) Types of rhizobial nodules and their distribution among the Leguminosae. Kirkia 13:53–124Google Scholar
  9. de Faria SM, Hay GT, Sprent JI (1988) Entry of rhizobia into roots of Mimosa scabrella Bentham occurs between epidermal cells. J Gen Microbiol 134:2291–2296Google Scholar
  10. Doyle JJ (2011) Phylogenetic perspectives on the origins of nodulation. Mol Plant Microbe Interact 24:1289–1295PubMedCrossRefGoogle Scholar
  11. Ducousso M, Thoen D (1991) Les types mycorhiziens des Acacieae. In Physiologie des arbres et arbustes en zones arides et semi-arides. Groupe d’étude de l’arbre. Paris, pp 1–8Google Scholar
  12. Galiana A, Alabarce J, Duhoux E (1990) Nodulation in vitro d’Acacia mangium Willd (Leguminosae). Ann Sci For 47:451–460CrossRefGoogle Scholar
  13. Galiana A, Prin Y, Mallet B, Gnahoua GM, Poitel M, Diem HG (1994) Inoculation of Acacia mangium with alginate beads containing selected Bradyrhizobium strains under field conditions: long-term effect on plant growth and persistence of the introduced strains in soil. Appl Environ Microbiol 60:3974–3980PubMedGoogle Scholar
  14. Galiana A, Gnahoua GM, Chaumont J, Lesueur D, Prin Y, Mallet B (1998) Improvement of nitrogen fixation in Acacia mangium through inoculation with rhizobium. Agrofor Syst 40:297–307CrossRefGoogle Scholar
  15. Giraud E, Moulin L, Vallenet D, Barbe V, Cytrin E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang WS, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, Emerich D, Verméglio A, Medigue C, Sadowsky M (2007) Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 316:1307–1312PubMedCrossRefGoogle Scholar
  16. Gross E, Cordeiro L, Caetano FH (2002) Nodule ultrastructure and initial growth of Anadenanthera peregrina (L.) Speg. var. falcata (Benth.) Altschul plants infected with rhizobia. Ann Bot 90:175–183CrossRefGoogle Scholar
  17. Harrier L, Whitty P, Sutherland JM, Sprent JI (2000) Pre-infection events in non-nodulating species of African Acacia. Afr J Ecol 38:8–15CrossRefGoogle Scholar
  18. Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Syst Biol 54:575–594PubMedCrossRefGoogle Scholar
  19. Le Roux C, Tentchev D, Prin Y, Goh D, Japarudin Y, Perrineau MM, Duponnois R, Domergue O, de Lajudie P, Galiana A (2009) Bradyrhizobia nodulating the Acacia mangium x A. auriculiformis interspecific hybrid are specific and differ from those associated with both parental species. Appl Environ Microbiol 75:7752–7759PubMedCrossRefGoogle Scholar
  20. Loureiro MF, James EK, Sprent JI, Franco AA (1995) Stem and root nodules on the tropical wetland legume Aeschynomene fluminensis. New Phytol 130:531–544CrossRefGoogle Scholar
  21. Maslin BR, Miller JT, Seigler DS (2003) Overview of the generic status of Acacia (Leguminosae: Mimosoideae). Aust Syst Bot 16:1–18CrossRefGoogle Scholar
  22. Ngom A, Nakagawa Y, Sawada H, Tsukahara J, Wakabayashi S, Uchiumi T, Nuntagij A, Kotepong S, Suzuki A, Higashi S, Abe M (2004) Novel symbiotic nitrogen-fixing member of the Ochrobactrum clade isolated from root nodules of Acacia mangium. J Gen Appl Microbiol 50:17–27PubMedCrossRefGoogle Scholar
  23. Nuswantara S, Fujie M, Sukiman HI, Yamashita M, Yamada T, Murooka Y (1997) Phylogeny of bacterial symbionts of the leguminous tree Acacia mangium. J Ferment Bioengin 84:511–518CrossRefGoogle Scholar
  24. Parveen N, Webb DT, Borthakur D (1996) Leucaena leucocephala nodules formed by a surface polysaccharide defective mutant of Rhizobium sp. strain TAL1145 are delayed in bacteroid development and nitrogen fixation. Mol Plant Microbe Interact 9:364–372CrossRefGoogle Scholar
  25. Pedley L (1978) A revision of Acacia Mill. in Queensland. Austrobaileya 1:75–234Google Scholar
  26. Prin Y, Rougier M (1985) Cytological and histochemical characteristics of the axenic root surface of Alnus glutinosa. Can J Bot 64:2216–2226CrossRefGoogle Scholar
  27. Räsänen LA, Sprent JI, Lindstrom K (2001) Symbiotic properties of sinorhizobia isolated from Acacia and Prosopis nodules in Sudan and Senegal. Plant Soil 235:193–210CrossRefGoogle Scholar
  28. Somasegaran P, Hoben HJ (1985) Methods in legume rhizobium technology. NIFTAL Project and MIRCEN, University of HawaïGoogle Scholar
  29. Sprent JI (2009) Legume nodulation: a global perspective. Wiley Blackwell, ChichesterGoogle Scholar
  30. Sprent JI, James EK (2007) Legume evolution: where do nodules and mycorrhizas fit in ? New Phytol 144:575–581Google Scholar
  31. Trainer MA, Charles TC (2006) The role of PHB metabolism in the symbiosis of rhizobia with legumes. Appl Microbiol Biotechnol 71:377–386PubMedCrossRefGoogle Scholar
  32. Turnbull JW, Midgley SJ, Cossalter C (1998) Tropical acacias planted in Asia: an overview. In: Turnbull JW, Crompton HR, Pinyopusarerk K (eds) Recent developments in acacia planting: proceedings of an international workshop, Hanoi, Vietnam, 27–30 October 1997 ACIAR Proceedings N° 82. Canberra Google Scholar
  33. Uheda E, Daimon H, Yoshizako F (2001) Colonization and invasion of peanut (Arachis hypogaea L.) roots by gusA-marked Bradyrhizobium sp. Can J Bot 79:733–738Google Scholar
  34. Uroz S, Dessaux Y, Oger P (2009) Quorum sensing and quorum quenching: the Yin and Yang of bacterial communication. Chem BioChem 10:205–216Google Scholar
  35. Van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, Farkas A, Mikulass K, Nagy A, Tiricz H, Satiat-Jeunemaître B, Alunni B, Bourge M, Kucho K, Abe M, Kereszt A, Maroti G, Uchiumi T, Kondorosi E, Mergaert P (2010) Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327(5969):1122–1126PubMedCrossRefGoogle Scholar
  36. Vasse J, Truchet G (1984) The Rhizobium-legume symbiosis: observation of root infection by bright-field microscopy after staining with methylene blue. Planta 161:487–489CrossRefGoogle Scholar
  37. Vasse J, de Billy F, Camut S, Truchet G (1990) Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol 172:4295–4306PubMedGoogle Scholar
  38. Vergnaud L, Chaboud A, Prin Y, Rougier M (1985) Preinfection events in the establishment of Alnus-Frankia symbiosis: development of a spot inoculation technique. Plant Soil 87:67–78CrossRefGoogle Scholar
  39. Wisniewski-Dye F, Downie JA (2002) Quorum-sensing in Rhizobium. Antonie Van Leeuwenhoek 81:397–407PubMedCrossRefGoogle Scholar
  40. Wojciechowski MF, Lavin MJ, Sanderson MJ (2004) A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK genes resolves many well-supported subclades within the family. Am J Bot 91:1846–1862PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Marie-Mathilde Perrineau
    • 1
  • Antoine Galiana
    • 1
  • Sergio M. de Faria
    • 2
  • Gilles Bena
    • 3
  • Robin Duponnois
    • 3
  • Paul Reddell
    • 4
  • Yves Prin
    • 1
    • 5
    Email author
  1. 1.CIRAD, UMR LSTMMontpellier Cedex 5France
  2. 2.EMBRAPASeropedicaBrazil
  3. 3.IRD, UMR LSTMMontpellier Cedex 5France
  4. 4.Ecobiotics SAYungaburraAustralia
  5. 5.LSTM, TA A-82/JMontpellier Cedex 5France

Personalised recommendations