, Volume 55, Issue 1, pp 19–28 | Cite as

Evidence for leaf endophyte regulation of root symbionts: effect of Neotyphodium endophytes on the pre-infective state of mycorrhizal fungi

  • M. Victoria Novas
  • Leopoldo J. Iannone
  • Alicia M. Godeas
  • J. Martin Scervino


Neotyphodium endophytes and arbuscular mycorrhizal (AM) fungi are common constituents of natural grasslands. The plant–endophyte symbiosis can introduce changes in soil conditions that affect the density and activity of different functional groups of soil organisms. In the present work we performed in vitro assays to evaluate the effect of root and endophyte exudates on the pre-infective state of mycorrhizal fungi (Gigaspora margarita and G. rosea). Plant roots of Bromus setifolius from populations of Patagonia, and four strains of Neotyphodium were used to obtain the exudates. Root exudates of infected plants, at a high concentration, significantly increased AMF hyphal branches and length relative to exudates from naturally endophyte free plants. The effect of Neotyphodium endophyte exudates on AMF mycelial length varied depending on strain and the concentration used, suggesting a differential interaction between endophyte and AMF species. AMF hyphal branches were increased by Neotyphodium fungal exudates in both mycorrhizal species. A few previous studies have suggested that Neotyphodium endophytes can reduce mycorrhizal sporulation and colonization of host roots in commonly-cultivated agronomic hosts. In this study we report the opposite effect in B. setifolius. This study reports the direct and positive effect of root exudates from plants in symbiosis with Neotyphodium, on AMF pre-infective state. Further, identical effects were detected using exudates from Neotyphodium endophytes.


Arbuscular mycorrhiza Bromus setifolius Endophytes Interaction Native grass Neotyphodium 


  1. Ahlholm JU, Helander M, Lehtimäki S, Wäli P, Saikkonen K (2002) Vertically transmitted fungal endophytes: different responses of host-parasite systems to environmental conditions. Oikos 99:173–183CrossRefGoogle Scholar
  2. Antunes PM, Miller J, Carvalho LM, Klironomos JN, Newman JA (2008) Even after death the endophytic fungus of Schedonorus phoenix reduces the arbuscular mycorrhizas of other plants. Func Ecol 22:912–918CrossRefGoogle Scholar
  3. Belesky DP, Malinowski DP (2000) Abiotic stresses and morphological plasticity and chemical adaptations of Neotyphodium-infected tall fescue plants. In: Bacon CW, White JF Jr (eds) Microbial endophytes. Marcel Dekker, New York, pp 455–484Google Scholar
  4. Bernard EC, Gwinn KD, Pless CD et al (1997) Soil invertebrate species diversity and abundance in endophyte infected tall fescue pastures. In: Bacon CW, Hill NS (eds) Neotyphodium/grass interactions. Plenum Press, pp. 383–388Google Scholar
  5. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304CrossRefGoogle Scholar
  6. Casas C, Omacini M, Montecchia MS, Correa OS (2011) Soil microbial community responses to the fungal endophyte Neotyphodium in Italian ryegrass. Plant Soil 340:347–355CrossRefGoogle Scholar
  7. Cheplick GP, Faeth SH (2009) Ecology and evolution of the grass-endophyte symbiosis. Oxford University Press, OxfordCrossRefGoogle Scholar
  8. Chu-Chou M, Guo B, An Z-Q, Hendrix JW, Ferris RS, Siegel MR, Dougherty CT, Burrus PB (1992) Suppression of mycorrhizal fungi in fescue by the Acremonium coenophialum endophyte. Soil Biol Biochem 24:633–637CrossRefGoogle Scholar
  9. Clark EM, White JF, Patterson RM (1983) Improved histochemical techniques for the detection of Acremonium coenophialum in tall fecue and methods of in vitro culture of the fungus. J Microbiol Methods 1:149–155CrossRefGoogle Scholar
  10. Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–1744PubMedCrossRefGoogle Scholar
  11. Clay K, Schardl CL (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:99–127CrossRefGoogle Scholar
  12. Clay K, Marks S, Cheplick GP (1993) Effects of insect herbivory and fungal endophyte infection on competitive interactions among grasses. Ecology 74:1767–1777CrossRefGoogle Scholar
  13. Faeth SH, Bultman TL (2002) Endophytic fungi and interactions among host plants herbivores and natural enemies. In: Tscharntke T, Hawkins BA (eds) Multitrophic level interactions. Cambridge University Press, Cambridge, pp 89–123CrossRefGoogle Scholar
  14. Faeth SH, Helander ML, Saikkonen KT (2004) Asexual Neotyphodium endophytes in a native grass reduce competitive abilities. Ecol Lett 7:304–313CrossRefGoogle Scholar
  15. Finkes LK, Cady AB, Mulroy JC, Clay K, Rudgers JA (2006) Plant–fungus mutualism affects spider composition in successional fields. Ecol Lett 9:347–356PubMedCrossRefGoogle Scholar
  16. Fracchia S, Sampedro I, Scervino JM, García-Romera I, Ocampo JA, Godeas A (2004) Influence of saprobe fungi and their exudates on arbuscular mycorrhizal symbioses. Symbiosis 36:169–182Google Scholar
  17. Galvagno MA (1976) Ensayos de nutrición en Ascobolus crenulatus P. Karst. (Fungi, Ascomycetes). Bol Soc Arg Bot 17:95–118Google Scholar
  18. Gentile A, Rossi MA, Cabral D, Craven KD, Schardl CL (2005) Origin, divergence, and phylogeny of Epichloe endophytes of native Argentine grasses. Molecular Phyl Evol 35:196–208CrossRefGoogle Scholar
  19. Glenn AE, Bacon CW, Price R, Hanlin RT (1996) Molecular phylogeny of Acremonium and its taxonomic implications. Mycologia 88:369–383CrossRefGoogle Scholar
  20. Guo BZ, Hendrix JW, An Z-Q, Ferriss RS (1992) Role of Acremonium endophyte of fescue on inhibition of colonisation and reproduction of mycorrhizal fungi. Mycologia 84:882–885CrossRefGoogle Scholar
  21. Iannone LJ, Cabral D (2006) Effects of the Neotyphodium endophyte status on plant performance of Bromus auleticus, a wild native grass from South America. Symbiosis 41:61–69CrossRefGoogle Scholar
  22. Iannone LJ, Novas MV, Young C, DeBattista JP, Schardl CL (2011a) Endophytes of native grasses from South America: biodiversity and ecology. Fungal Ecology (in press), doi:10.1016/j.funeco.2011.05.007
  23. Iannone LJ, White JF, Giussani LM, Cabral D, Novas MV (2011b) Diversity and distribution of Neotyphodium-infected grasses in Argentina. Mycol Prog 10:9–19CrossRefGoogle Scholar
  24. Jenkins MB, Franzluebbers AJ, Humayoun SB (2006) Assessing short-term responses of prokaryotic communities in bulk and rhizosphere soils to tall fescue endophyte infection. Plant Soil 289:309–320CrossRefGoogle Scholar
  25. Koulman A, Lane GA, Christensen MJ, Fraser K, Tapper BA (2007) Peramine and other ‘fungal’ alkaloids are exuded in the guttation fluid of endophyte-infected grasses. Phytochemistry 68:353–360CrossRefGoogle Scholar
  26. Latch GCM (1993) Physiological interactions of endophytic fungi and their hosts. Biotic stress tolerance imparted to grasses by endophytes. Agric Ecosyst Environ 44:143–156CrossRefGoogle Scholar
  27. Leuchtmann A (1992) Systematics, distribution, and host specificity of grass endophytes. Nat Toxins 1:150–162PubMedCrossRefGoogle Scholar
  28. Lindstrom JT, Belanger FC (1994) Purification and characterization of an endophytic fungal proteinase that is abundantly expressed in the infected host grass. Plant Physiol 106:7–16PubMedGoogle Scholar
  29. Liu Q, Parsons AJ, Xue H, Harzer H, Rasmussen S (2007) Mémage á trois – are two fungi too much for ryegrass? Proceeding of the 6th International Symposium on Fungal Endophytes of Grasses. Christchurch New Zealand, pp 181–183Google Scholar
  30. Liu Q, Parsons AJ, Xuel H, Fraser K, Ryan GD, Newman JA, Rasmussen S (2011) Competition between foliar Neotyphodium lolii endophytes and mycorrhizal Glomus spp. fungi in Lolium perenne depends on resource supply and host carbohydrate content. Funct Ecol 25:910–920CrossRefGoogle Scholar
  31. Mack KML, Rudgers JA (2008) Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos 117:310–320CrossRefGoogle Scholar
  32. Malinowski DP, Belesky DP (2006) Ecological importance of Neotyphodium spp. Grass endophytes in agroecosystems. Grassland Science 52:1–14CrossRefGoogle Scholar
  33. Marsh BAB (1971) Measurement of length in random arrangements of lines. J Appl Ecol 8:265–270CrossRefGoogle Scholar
  34. Morgan-Jones G, Gams W (1982) Notes on hyphomycetes. XLI. An endophyte of Festuca arundinacea and the anamorph of Epichole typhina, new taxa in one of two new sections of Acremonium. Mycotaxon 15:311–318Google Scholar
  35. Morris WF, Hufbauer RA, Agrawal AA, Bever JD, Borowicz VA, Gilbert GS et al (2007) Direct and interactive effects of enemies and mutualists on plant performance: a meta-analysis. Ecology 88:1021–1029PubMedCrossRefGoogle Scholar
  36. Mosse B (1962) The establishment of vesicular arbuscular mycorrhiza under aseptic conditions. J Gen Microbiol 27:509–520PubMedGoogle Scholar
  37. Müller J (2003) Artificial infection by endophytes affect growth and mycorrhizal colonisation of Lolium perenne. Funct Plant Biol 30:419–424CrossRefGoogle Scholar
  38. Müller CB, Krauss J (2005) Symbiosis between grasses and asexual fungal endophytes. Curr Opi Plant Biol 8:450–456CrossRefGoogle Scholar
  39. Novas MV, Cabral D, Godeas AM (2005) Interaction between grass endophytes and mycorrhizas in Bromus setifolius from Patagonia, Argentina. Symbiosis 40:23–30Google Scholar
  40. Novas MV, Collantes M, Cabral D (2007) Environmental effects on grass-endophyte associations in the harsh conditions of south Patagonia. FEMS Microbiol Ecol 61:164–173PubMedCrossRefGoogle Scholar
  41. Novas MV, Iannone LJ, Godeas A, Cabral D (2009) Positive association between mycorrhiza and foliar endophytes in Poa bonariensis, a native grass. Mycol Prog 8:75–81CrossRefGoogle Scholar
  42. Oliveira RS, Castro PML, Dodd JC, Vosátka M (2005) Synergistic effect of Glomus intraradices and Frankia spp. on the growth and stress recovery of Alnus glutinosa in an alkaline antropogenic sediment. Chemosphere 60:1462–1470PubMedCrossRefGoogle Scholar
  43. Omacini M, Chaneton E, Ghersa CM, Müller CB (2001) Symbiotic fungal endophytes control insect host-parasite interaction web. Nature 409:78–81PubMedCrossRefGoogle Scholar
  44. Omacini M, Chaneton E, Ghersa CM, Otero P (2004) Do foliar endophytes affect grass litter decomposition? A microcosm approach using Lolium multiflorum. Oikos 104:581–590CrossRefGoogle Scholar
  45. Omacini M, Eggers T, Bonkowski M, Gange AC, Jones TH (2006) Leaf endophytes affect mycorrhizal status of co-infected and neibouring plant. Funct Ecol 20:226–232CrossRefGoogle Scholar
  46. Ponce MA, Scervino JM, Erra-Balsells R, Ocampo JA, Godeas AM (2004) Flavonoids from shoots and roots of Trifolium repens (white clover) grown in presence or absence of the arbuscular mycorrhizal fungus Glomus intraradices. Phytochemistry 65:1925–1930PubMedCrossRefGoogle Scholar
  47. Ponce MA, Bompadre MJ, Scervino JM, Ocampo JA, Chaneton EJ, Godeas AM (2009) Flavonoids, benzoic acids and cinnamic acids isolated from shoots and roots of Italian rye grass (Lolium multiflorum Lam.) with and without endophyte association and arbuscular mycorrhizal fungus. Biochem Syst Ecol 37:245–253CrossRefGoogle Scholar
  48. Roberts CA, West CP, Spiers DE (2005) Neotyphodium in cool-season grasses. Blackwell Publishers, AmesCrossRefGoogle Scholar
  49. Saikkonen K, Lehtonen P, Helander M, Koricheva J, Faeth SH (2006) Model systems in ecology: dissecting the endophyte-grass literature. Trends Plant Sci 11:428–433PubMedCrossRefGoogle Scholar
  50. Scervino JM, Ponce MA, Erra-Bassels R, Vierheilig H, Ocampo JA, Godeas A (2005) Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycol Res 109:789–794PubMedCrossRefGoogle Scholar
  51. Scervino JM, Sampedro I, Ponce MA, Rodriguez MA, Ocampo JA, Godeas A (2008) Rhodotorulic acid enhances root colonization of tomato plants by arbuscular mycorrhizal (AM) fungi due to its stimulatory effect on the pre-symbiotic stages of the AM fungi. Soil Biol Biochem 40:2474–2476CrossRefGoogle Scholar
  52. Scervino JM, Gottlieb A, Silvani VA, Pérgola M, Fernández L, Godeas A (2009) Exudates of dark septate endophyte (DSE) modulate the development of the arbuscular mycorrhizal fungus (AMF) Gigaspora rosea. Soil Biol Biochem 41:1753–1756CrossRefGoogle Scholar
  53. Schardl CL (2010) The epichloae, symbionts of the grass subfamily Pooïdeae. Ann Missouri Bot Gard 97:646–665CrossRefGoogle Scholar
  54. Smith SE, Read DJ (1997) Mycorrhizal Symbiosis. 2° Edittion. Academic Press, LondonGoogle Scholar
  55. Stachowicz JJ (2001) Mutualisms, positive interactions, and the structure of ecological communities. Bioscience 51:235–246CrossRefGoogle Scholar
  56. Vierheilig H, Piche Y (2002) Signalling in arbuscular mycorrhiza: facts and hypotheses. In: Buslig B, Manthey J (eds) Flavonoids in cell function. Kluwer, New York, pp 23–39Google Scholar
  57. Vignale MV, Arrieta A Pinget AD, De Battista JP, Iannone LJ, Novas, MV (2011) Asociación positiva entre endofitos Neotyphodium y Micorrizas arbusculares en Bromus auleticus. VII CLAM (VII Congreso Latinoamericano de Micologia). Costa RicaGoogle Scholar
  58. Vonderwell JD, Enebak SA (2000) Differential effects of rhizobacterial strain and dose on the ectomycorrhizal colonization of loblolly pine seedlings. For Sci 46:437–441Google Scholar
  59. White JF (1987) Widespread distribution of endophytes in the Poaceae. Plant Dis 71:340–342CrossRefGoogle Scholar
  60. White JF, Cole GT (1985) Endophyte-host associations in forage grasses. III. In vitro Inhibition of Fungi by Acremonium coenophialum. Mycologia 77:487–489CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. Victoria Novas
    • 1
  • Leopoldo J. Iannone
    • 1
    • 2
  • Alicia M. Godeas
    • 3
  • J. Martin Scervino
    • 3
  1. 1.Lab. de Micología, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires & PROPLAME-PRHIDEB-CONICETBuenos AiresArgentina
  2. 2.Departamento de Ingeniería Química, Facultad de IngenieríaUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Lab. Microbiología del Suelo, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, & INBA-CONICET, Facultad de AgronomíaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations