Skip to main content
Log in

Origin of eukaryotic cells: 40 years on

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

The year 1970 saw the publication of Origin of Eukaryotic Cells by Lynn Margulis. This influential book brought the exciting and weighty problems of cellular evolution to the scientific mainstream, simultaneously breaking new ground and ‘re-discovering’ the decades-old ideas of German and Russian biologists. In this commemorative review, I discuss the 40 years that have elapsed since this landmark publication, with a focus on the ‘molecular era’: how DNA sequencing and comparative genomics have proven beyond all doubt the central tenets of the endosymbiont hypothesis for the origin of mitochondria and plastids, and, at the same time, revealed a genetic and genomic complexity in modern-day eukaryotes that could not have been imagined in decades past.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Allsopp A (1969) Phylogenetic relationships of the procaryotes and the origin of the eucaryotic cell. New Phytol 68:591–612

    Article  Google Scholar 

  • Andersson SG (2006) Genetics. The bacterial world gets smaller. Science 314:259–260

    Article  PubMed  CAS  Google Scholar 

  • Archibald JM (2007) Nucleomorph genomes: structure, function, origin and evolution. Bioessays 29:392–402

    Article  PubMed  CAS  Google Scholar 

  • Archibald JM (2009) The puzzle of plastid evolution. Curr Biol 19:R81–R88

    Article  PubMed  CAS  Google Scholar 

  • Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972–977

    Article  PubMed  CAS  Google Scholar 

  • Barberà MJ, Ruiz-Trillo I, Leigh J, Hug LA, Roger AJ (2007) The diversity of mitochondrion-related organelles amongst eukaryotic microbes. In: Martin WF, Müller M (eds) Origin of mitochondria and hydrogenosomes. Springer, Berlin, pp 239–275

    Chapter  Google Scholar 

  • Belanger AS, Brouard JS, Charlebois P, Otis C, Lemieux C, Turmel M (2006) Distinctive architecture of the chloroplast genome in the chlorophycean green alga Stigeoclonium helveticum. Mol Gen and Genom 276:464–477

    Article  CAS  Google Scholar 

  • Bhattacharya D, Schmidt HA (1997) Division glaucocystophyta. In: Bhattacharya D (ed) Origin of algae and their plastids. Springer, Wein, pp 139–148

    Google Scholar 

  • Bhattacharya D, Yoon HS, Hackett JD (2003) Photosynthetic eukaryotes unite: endosymbiosis connects the dots. Bioessays 26:50–60

    Article  Google Scholar 

  • Bodyl A (2005) Do plastid-related characters support the chromalveolate hypothesis? J Phycol 41:712–719

    Article  Google Scholar 

  • Bodyl A, Mackiewicz P, Stiller JW (2010) Comparative genomic studies suggest that the cyanobacterial endosymbionts of the amoeba Paulinella chromatophora possess an import apparatus for nuclear-encoded proteins. Plant Biol (Stuttg) 12:639–649

    CAS  Google Scholar 

  • Bonen L, Doolittle WF (1975) On the prokaryotic nature of red algal chloroplasts. Proc Natl Acad Sci USA 72:2310–2314

    Article  PubMed  CAS  Google Scholar 

  • Bonen L, Doolittle WF (1976) Partial sequences of 16S rRNA and the phylogeny of blue-green algae and chloroplasts. Nature 261:669–673

    Article  PubMed  CAS  Google Scholar 

  • Bonen L, Cunningham RS, Gray MW, Doolittle WF (1977) Wheat embryo mitochondrial 18S ribosomal RNA: evidence for its prokaryotic nature. Nucleic Acids Res 4:663–671

    Article  PubMed  CAS  Google Scholar 

  • Boxma B, de Graaf RM, van der Staay GW, van Alen TA, Ricard G, Gabaldon T, van Hoek AH, Moon-van der Staay SY, Koopman WJ, van Hellemond JJ, Tielens AG, Friedrich T, Veenhuis M, Huynen MA, Hackstein JH (2005) An anaerobic mitochondrion that produces hydrogen. Nature 434:74–79

    Article  PubMed  CAS  Google Scholar 

  • Burki F, Shalchian-Tabrizi K, Pawlowski J (2008) Phylogenomics reveals a new 'megagroup' including most photosynthetic eukaryotes. Biol Lett 4:366–369. doi:10.1098/rsbl.2008.0224

    Article  PubMed  Google Scholar 

  • Burki F, Inagaki Y, Brate J, Archibald JM, Keeling PJ, Cavalier-Smith T, Sakaguchi M, Hashimoto T, Horak A, Kuma K, Klaveness D, Jakobsen KS, Pawlowski J, Shalchian-Tabrizi K (2009) Large-scale phylogenomic analyses reveal that two enigmatic protist lineages, Telonemia and Centroheliozoa, are related to photosynthetic chromalveolates. Genome Biol Evol 1:231–238

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1975) The origin of nuclei and of eukaryotic cells. Nature 256:463–467

    Article  Google Scholar 

  • Cavalier-Smith T (1983a) A 6-kingdom classification and a unified phylogeny. In: Schwemmler W, Schenk JEA (eds) Endocytobiology. de Gruyter, Berlin, pp 1027–1034

    Google Scholar 

  • Cavalier-Smith T (1983b) Endosymbiotic origin of the mitochondrial envelope. In: Schwemmler W, Schenk HEA (eds) Endocytobiology II. de Gruyter, Berlin, pp 265–279

    Google Scholar 

  • Cavalier-Smith T (1987) Origin of eukaryote and archaebacterial cells. Ann NY Acad Sci 504:17–54

    Article  Google Scholar 

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347–366

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2007) The chimaeric origin of mitochondria: photosynthetic cell enslavement, gene-transfer pressure, and compartmentation efficiency. In: Martin WF, Müller M (eds) Origin of mitochondria and hydrogenosomes. Springer, Berlin, pp 161–199

    Chapter  Google Scholar 

  • Cavalier-Smith T (2010) Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution. Biol Direct 5:7

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T, Lee JJ (1985) Protozoa as hosts for endosymbioses and the conversion of symbionts into organelles. J Protozool 32:376–379

    Google Scholar 

  • Chan CX, Yang EC, Banerjee T, Yoon HS, Martone PT, Estevez JM, Bhattacharya D (2011) Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes. Curr Biol 21:328–333

    Article  PubMed  CAS  Google Scholar 

  • Clark CG, Roger AJ (1995) Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proc Natl Acad Sci USA 92:6518–6521

    Article  PubMed  CAS  Google Scholar 

  • Curtis BA, Archibald JM (2010) Problems and progress in understanding the origins of mitochondria and plastids. In: Seckbach J, Grube M (eds) Symbioses and stress. Springer, Germany, pp 41–62

    Google Scholar 

  • Dacks JB, Doolittle WF (2001) Reconstructing/deconstructing the earliest eukaryotes: how comparative genomics can help. Cell 107:419–425

    Article  PubMed  CAS  Google Scholar 

  • Dagan T, Martin W (2007) Testing hypotheses without considering predictions. Bioessays 29:500–503

    Article  PubMed  Google Scholar 

  • de Duve C (1969) Evolution of the peroxisome. Ann NY Acad Sci USA 168:369–381

    Article  Google Scholar 

  • Delwiche CF (1999) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154(Supplement):S164–S177

    Article  PubMed  Google Scholar 

  • Delwiche CF, Kuhsel M, Palmer JD (1995) Phylogenetic analysis of tufA sequences indicates a cyanobacterial origin of all plastids. Mol Phylogenet Evol 4:110–128

    Article  PubMed  CAS  Google Scholar 

  • Delwiche C, Andersen RA, Bhattacharya D, Mishler BD (2004) Algal evolution and the early radiation of green plants. In: Cracraft J, Donoghue MJ (eds) Assembling the tree of life. Oxford University Press, New York, pp 121–137

    Google Scholar 

  • Doolittle WF (1980) Revolutionary concepts in evolutionary biology. Trends Biochem Sci 5:146–149

    Article  CAS  Google Scholar 

  • Douglas SE, Penny SL (1999) The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48:236–244

    Article  PubMed  CAS  Google Scholar 

  • Douglas SE, Zauner S, Fraunholz M, Beaton M, Penny S, Deng L, Wu X, Reith M, Cavalier-Smith T, Maier U-G (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410:1091–1096

    Article  PubMed  CAS  Google Scholar 

  • Drum RW, Pankratz S (1965) Fine structure of an unusual cytoplasmic inclusion in the diatom genus Rhopalodia. Protoplasma 60:141–149

    Article  Google Scholar 

  • Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E, Green BR (1999) A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. J Mol Evol 48:59–68

    Article  PubMed  CAS  Google Scholar 

  • Edlind TD, Li J, Visvesvara GS, Vodkin MH, McLaughlin GL, Katiyar SK (1996) Phylogenetic analysis of beta-tubulin sequences from amitochondrial protozoa. Mol Phylogenet Evol 5:359–367

    Article  PubMed  CAS  Google Scholar 

  • Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630

    Article  PubMed  CAS  Google Scholar 

  • Embley TM, van der Giezen M, Horner DS, Dyal PL, Foster PG (2002) Mitochondria and hydrogenosomes are two forms of the same fundamental organelle. Royal Soc London Series B 358:191–203

    Article  CAS  Google Scholar 

  • Embley TM, van der Giezen M, Horner DS, Dyal PL, Bell S, Foster PG (2003) Hydrogenosomes, mitochondria and early eukaryotic evolution. IUBMB Life 55:387–395

    Article  PubMed  CAS  Google Scholar 

  • Geitler L (1977) Life history of the Epithemiaceae Epithemia, Rhopalodia and Denticula (Diatomophyceae) and their presumable symbiotic spheroid bodies. Plant Syst Evol 128:259–275

    Article  Google Scholar 

  • Gibbs SP (1978) The chloroplasts of Euglena may have evolved from symbiotic green algae. Can J Bot 56:2883–2889

    Article  Google Scholar 

  • Gibbs SP (2006) Looking at life: from binoculars to the electron microscope. Annu Rev Plant Biol 57:1–17

    Article  PubMed  CAS  Google Scholar 

  • Gillott MA, Gibbs SP (1980) The cryptomonad nucleomorph: its ultrastructure and evolutionary significance. J Phycol 16:558–568

    Article  Google Scholar 

  • Gilson P, McFadden GI (1995) The chlorarachniophyte: a cell with two different nuclei and two different telomeres. Chromosoma 103:635–641

    Article  PubMed  CAS  Google Scholar 

  • Gilson PR, Su V, Slamovits CH, Reith ME, Keeling PJ, McFadden GI (2006) Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature's smallest nucleus. Proc Natl Acad Sci USA 103:9566–9571

    Article  PubMed  CAS  Google Scholar 

  • Glockner G, Rosenthal A, Valentin K (2000) The structure and gene repertoire of an ancient red algal plastid genome. J Mol Evol 51:382–390

    PubMed  CAS  Google Scholar 

  • Gokøsyr J (1967) Evolution of eucaryotic cells. Nature 214:1161

    Article  Google Scholar 

  • Goldberg AV, Molik S, Tsaousis AD, Neumann K, Kuhnke G, Delbac F, Vivares CP, Hirt RP, Lill R, Embley TM (2008) Localization and functionality of microsporidian iron-sulphur cluster assembly proteins. Nature 452:624–629

    Article  PubMed  CAS  Google Scholar 

  • Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517

    Article  PubMed  CAS  Google Scholar 

  • Gray MW (1992) The endosymbiont hypothesis revisited. Int Rev Cytol 141:233–357

    Article  PubMed  CAS  Google Scholar 

  • Gray MW, Doolittle WF (1982) Has the endosymbiont hypothesis been proven? Microbiol Rev 46:1–42

    PubMed  CAS  Google Scholar 

  • Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481

    Article  PubMed  CAS  Google Scholar 

  • Greenwood AD (1974) The Cryptophyta in relation to phylogeny and photosynthesis. Proc 8th Int Congr Electron Microsc 2:566–567

    Google Scholar 

  • Greenwood AD, Griffiths HB, Santore UJ (1977) Chloroplasts and cell compartments in Cryptophyceae. Brit Phycol J 12:119

    Google Scholar 

  • Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (2004) Dinoflagellates: a remarkable evolutionary experiment. Am J Bot 91:1523–1534

    Article  PubMed  CAS  Google Scholar 

  • Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AG, Roger AJ (2009) Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups". Proc Natl Acad Sci USA 106:3859–3864

    Article  PubMed  CAS  Google Scholar 

  • Hansmann P, Eschbach S (1991) Isolation and preliminary characterization of the nucleus and the nucleomorph of a cryptomonad, Pyrenomonas salina. Europ J Cell Biol 52:373–378

    Google Scholar 

  • Hansmann P, Falk H, Sitte P (1985) DNA in the nucleomorph of Cryptomonas demonstrated by DAPI fluorescence. Zeitschrift fur Naturforschung 40c:933–935

    CAS  Google Scholar 

  • Hashimoto T, Nakamura Y, Kamaishi T, Hasegawa M (1997) Early evolution of eukaryotes inferred from the amino acid sequences of elongation factors 1a and 2. Arch Protistenkd 148:287–295

    Google Scholar 

  • Helmchen TA, Bhattacharya D, Melkonian M (1995) Analyses of ribosomal RNA sequences from glaucocystophyte cyanelles provide new insights into the evolutionary relationships of plastids. J Mol Evol 41:203–210

    Article  PubMed  CAS  Google Scholar 

  • Hibberd DJ, Norris RE (1984) Cytology and ultrastructure of Chlorarachnion reptans (Chlorarachniophyta divisio nova, Chlorarachniophyceae classis nova). J Phycol 20:310–330

    Article  Google Scholar 

  • Hirt RP, Healy B, Vossbrinck CR, Canning EU, Embley TM (1997) A mitochondrial Hsp70 orthologue in Vairimorpha necatrix: molecular evidence that microsporidia once contained mitochondria. Curr Biol 7:995–998

    Article  PubMed  CAS  Google Scholar 

  • Hirt RP, Logsdon JM Jr, Healy B, Dorey MW, Doolittle WF, Embley TM (1999) Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc Natl Acad Sci USA 96:580–585

    Article  PubMed  CAS  Google Scholar 

  • Hjort K, Goldberg AV, Tsaousis AD, Hirt RP, Embley TM (2010) Diversity and reductive evolution of mitochondria among microbial eukaryotes. Phil Trans R Soc B 365:713–727

    Article  PubMed  CAS  Google Scholar 

  • Hoogenraad HR (1927) Zur Kenntnis der Fortpflanzung von Paulinella chromatophora Lauterb. Zool Anz 72:140–150

    Google Scholar 

  • Hug LA, Stechmann A, Roger AJ (2010) Phylogenetic distributions and histories of proteins involved in anaerobic pyruvate metabolism in eukaryotes. Mol Biol Evol 27:311–324

    Article  PubMed  CAS  Google Scholar 

  • John P, Whatley FR (1975) Paracoccus denitrificans and the evolutionary origin of the mitochondrion. Nature 254:495–498

    Article  PubMed  CAS  Google Scholar 

  • Johnson PW, Hargraves PE, Sieburth JM (1988) Ultrastructure and ecology of Calycomonas ovalis Wulff, 1919, (Chrysophyceae) and its redescription as a testate rhizopod, Paulinella ovalis n. comb. (Filosea: Euglyphina). J Protozool 35:618–626

    Google Scholar 

  • Karakashian SJ, Karakashian M, Rudzinska M (1968) Electron microscopic observations on the symbiosis of Paramecium bursaria and its intracellular algae. J Protozool 15:113–128

    Google Scholar 

  • Katinka MD, Duprat S, Cornillot E, Metenier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivares CP (2001) Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414:450–453

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ (2009) Chromalveolates and the evolution of plastids by secondary endosymbiosis. J Eukaryot Microbiol 56:1–8

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 365:729–748

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ, Doolittle WF (1996) Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. Mol Biol Evol 13:1297–1305

    PubMed  CAS  Google Scholar 

  • Keeling PJ, Slamovits CH (2004) Simplicity and complexity of microsporidian genomes. Eukaryot Cell 3:1363–1369

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ, Luker MA, Palmer JD (2000) Evidence from beta-tubulin phylogeny that microsporidia evolved from within the fungi. Mol Biol Evol 17:23–31

    PubMed  CAS  Google Scholar 

  • Khakhina L (1979) Concepts of symbiogenesis: a historical and critical study of the research of Russian Botanists (trans: Merkel S, Coalson R). Yale University Press

  • Kies L (1974) Electron microscopical investigations on Paulinella chromatophora Lauterborn, a thecamoeba containing blue-green endosymbionts (Cyanelles) (author's transl). Protoplasma 80:69–89

    Article  PubMed  CAS  Google Scholar 

  • Kim E, Archibald JM (2009) Diversity and evolution of plastids and their genomes. In: Aronsson H, Sandelius AS (eds) The chloroplast-interactions with the environment. Plant cell monographs. Springer, Berlin, pp 1–39

    Google Scholar 

  • Kim E, Graham LE (2008) EEF2 analysis challenges the monophyly of Archaeplastida and Chromalveolata. PLoS One 3:e2621

    Article  PubMed  CAS  Google Scholar 

  • Klein RM (1970) Relationships between blue-green and red algae. Ann NY Acad Sci 175:623–632

    Article  Google Scholar 

  • Klein R, Cronquist A (1967) A consideration of the evolutionary and taxonomic significance of some biochemical, micromorphological and physiological characters in the Thallophytes. Quart Rev Biol 42:105–296

    PubMed  CAS  Google Scholar 

  • Kleine T, Maier UG, Leister D (2009) DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. Annu Rev Plant Biol 60:115–138

    Article  PubMed  CAS  Google Scholar 

  • Kneip C, Voss C, Lockhart PJ, Maier UG (2008) The cyanobacterial endosymbiont of the unicellular algae Rhopalodia gibba shows reductive genome evolution. BMC Evol Biol 8:30

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV (2010a) The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol 11:209

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV (2010b) Preview. The incredible expanding ancestor of eukaryotes. Cell 140:606–608

    Article  PubMed  CAS  Google Scholar 

  • Kozo-Polyansky B (1924) Symbiogenesis: a new principle of evolution (trans: Fet V). Harvard University Press, Cambridge Massachusetts

    Google Scholar 

  • Lane N, Martin W (2010) The energetics of genome complexity. Nature 467:929–934

    Article  PubMed  CAS  Google Scholar 

  • Lane CE, van den Heuvel K, Kozera C, Curtis BA, Parsons B, Bowman S, Archibald JM (2007) Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proc Natl Acad Sci USA 104:19908–19913

    Article  PubMed  CAS  Google Scholar 

  • Larkum AW, Lockhart PJ, Howe CJ (2007) Shopping for plastids. Trends Plant Sci 12:189–195

    Article  PubMed  CAS  Google Scholar 

  • Lauterborn R (1895) Protozoenstudien II. Paulinella chromatophora nov. gen., nov. spec., ein beschalter Rhizopode des Süßwassers mit blaugrünen chromatophorenartigen Einschlüssen. Z Wiss Zool 59:537–544

    Google Scholar 

  • Lee RE (1977) Evolution of algal flagellates with chloroplast endoplasmic reticulum from the ciliates. South Afr J Sci 73:179–182

    Google Scholar 

  • Leipe DD, Gunderson JH, Nerad TA, Sogin ML (1993) Small subunit ribosomal RNA+ of Hexamita inflata and the quest for the first branch in the eukaryotic tree. Mol Biochem Parasitol 59:41–48

    Article  PubMed  CAS  Google Scholar 

  • Lewis LA, McCourt RM (2004) Green algae and the origin of land plants. Am J Bot 91:1535–1556

    Article  PubMed  Google Scholar 

  • Li J, Katiyar SK, Hamelin A, Visvesvara GS (1996) Tubulin genes from AIDS-associated microsporidia and implications for phylogeny and benzimidazole sensitivity. Mol Biochem Parasitol 78:289–295

    Article  PubMed  CAS  Google Scholar 

  • Lindmark DG, Müller M (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem 248:7724–7728

    PubMed  CAS  Google Scholar 

  • Löffelhardt W, Bohnert HJ, Bryant DA (1997) The complete sequence of the Cyanophora paradoxa cyanelle genome. In: Bhattacharya D (ed) Origins of Algae and their Plastids. Springer, Wein, pp 142–162

    Google Scholar 

  • Ludwig M, Gibbs SP (1985) DNA is present in the nucleomorph of cryptomonads: further evidence that the chloroplast evolved from a eukaryotic endosymbiont. Protoplasma 127:9–20

    Article  Google Scholar 

  • Mackiewicz P, Bodyl A (2010) A hypothesis for import of the nuclear-encoded PsaE protein of Paulinella chromatophora (Cercozoa, Rhizaria) into its cyanobacterial endosymbionts/plastids via the endomembrane system. J Phycol 46:847–859

    Article  CAS  Google Scholar 

  • Maier UG, Hofmann CJ, Eschbach S, Wolters J, Igloi GL (1991) Demonstration of nucleomorph-encoded eukaryotic small subunit ribosomal RNA in cryptomonads. Mol Gen Genet 230:155–160

    Article  PubMed  CAS  Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven

    Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution. W. H. Freeman and Company, San Francisco

    Google Scholar 

  • Margulis L (1998) Symbiotic planet. Basic Books, New York

    Google Scholar 

  • Margulis L (2004) Serial endosymbiotic theory (SET) and composite individuality: transition from bacterial to eukaryotic genomes. Microbiol Today 31:172–174

    Google Scholar 

  • Margulis L, Dolan MF, Guerrero R (2000) The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists. Proc Natl Acad Sci USA 97:6954–6959

    Article  PubMed  CAS  Google Scholar 

  • Margulis L, Dolan MF, Whiteside JH (2005) "Imprefections and oddities" in the origin of the nucleus. Paleobiology 31:175–191

    Article  Google Scholar 

  • Margulis L, Chapman M, Guerrero R, Hall J (2006) The last eukaryotic common ancestor (LECA): acquisition of cytoskeletal motility from aerotolerant spirochetes in the Proterozoic Eon. Proc Natl Acad Sci USA 103:13080–13085

    Article  PubMed  CAS  Google Scholar 

  • Marin B, Nowack ECM, Melkonian M (2005) A plastid in the making: evidence for a second primary endosymbiosis. Protist 156:425–432

    Article  PubMed  CAS  Google Scholar 

  • Martin W (2008) Anaerobic eukaryotes in pursuit of phylogenetic normality: the evolution of hydrogenosomes and mitosomes. In: Tachezy J (ed) Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes, vol 9. Microbiol Monogr Springer-Verlag, Berlin, pp 1–20

    Chapter  Google Scholar 

  • Martin W, Muller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Hoffmeister M, Rotte C, Henze K (2001) An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem 382:1521–1539

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki M, Misumi O, Shin IT, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657

    Article  PubMed  CAS  Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci USA 74:560–564

    Article  PubMed  CAS  Google Scholar 

  • McCutcheon JP (2010) The bacterial essence of tiny symbiont genomes. Curr Opin Microbiol 13:73–78

    Article  PubMed  CAS  Google Scholar 

  • McCutcheon JP, McDonald BR, Moran NA (2009) Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Genet 5:e1000565

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI (1999) Plastids and protein targeting. J Eukaryot Microbiol 46:339–346

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI, van Dooren GG (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14:R514–R516

    Article  PubMed  CAS  Google Scholar 

  • Melkonian M, Mollenhauer D (2005) Robert Lauterborn (1869–1952) and his Paulinella chromatophora. Protist 156:253–262

    Article  PubMed  Google Scholar 

  • Mereschkowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25:593–604. English translation in Martin W, Kowallik, KV (1999) Annotated English translation of Mereschkowsky's paper Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Eur J Phycol 34:287–295

    Google Scholar 

  • Moore CE, Archibald JM (2009) Nucleomorph genomes. Annu Rev Genet 43:251–264

    Article  PubMed  CAS  Google Scholar 

  • Moran NA (2002) Microbial minimalism: genome reduction in bacterial pathogens. Cell 108:583–586

    Article  PubMed  CAS  Google Scholar 

  • Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190

    Article  PubMed  CAS  Google Scholar 

  • Moreira D, Le Guyader H, Phillippe H (2000) The origin of red algae and the evolution of chloroplasts. Nature 405:69–72

    Article  PubMed  CAS  Google Scholar 

  • Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, Olsen GJ, Best AA, Cande WZ, Chen F, Cipriano MJ, Davids BJ, Dawson SC, Elmendorf HG, Hehl AB, Holder ME, Huse SM, Kim UU, Lasek-Nesselquist E, Manning G, Nigam A, Nixon JE, Palm D, Passamaneck NE, Prabhu A, Reich CI, Reiner DS, Samuelson J, Svard SG, Sogin ML (2007) Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317:1921–1926

    Article  PubMed  CAS  Google Scholar 

  • Müller M (1993) The hydrogenosome. J Gen Microbiol 139(Pt 12):2879–2889

    PubMed  Google Scholar 

  • Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M (2006) The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:267

    Article  PubMed  CAS  Google Scholar 

  • Nakayama T, Ishida K (2009) Another acquisition of a primary photosynthetic organelle is underway in Paulinella chromatophora. Curr Biol 19:R284–R285

    Article  PubMed  CAS  Google Scholar 

  • Nass MMK, Nass S (1963) Intramitochondrial fibers with DNA characteristics. I. Fixation and electron staining reactions. J Cell Biol 19:593–611

    Article  PubMed  CAS  Google Scholar 

  • Nelissen B, Van de Peer Y, Wilmotte A, De Wachter R (1995) An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Mol Biol Evol 12:1166–1173

    PubMed  CAS  Google Scholar 

  • Nikoh N, McCutcheon JP, Kudo T, Miyagishima SY, Moran NA, Nakabachi A (2010) Bacterial genes in the aphid genome: absence of functional gene transfer from buchnera to its host. PLoS Genet 6:e1000827

    Article  PubMed  CAS  Google Scholar 

  • Nowack EC, Melkonian M (2010) Endosymbiotic associations within protists. Philos Trans R Soc Lond B Biol Sci 365:699–712

    Article  PubMed  CAS  Google Scholar 

  • Nowack ECM, Melkonian M, Glöckner G (2008) Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol 18:410–418

    Article  PubMed  CAS  Google Scholar 

  • Nowack EC, Vogel H, Groth M, Grossman AR, Melkonian M, Glockner G (2011) Endosymbiotic gene transfer and transcriptional regulation of transferred genes in Paulinella chromatophora. Mol Biol Evol 28:407–422

    Article  PubMed  CAS  Google Scholar 

  • Nozaki H (2005) A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended. J Plant Res 118:247–255

    Article  PubMed  Google Scholar 

  • Nozaki H, Iseki M, Hasegawa M, Misawa K, Nakada T, Sasaki N, Watanabe M (2007) Phylogeny of primary photosynthetic eukaryotes as deduced from slowly evolving nuclear genes. Mol Biol Evol 24:1592–1595

    Article  PubMed  CAS  Google Scholar 

  • Nozaki H, Maruyama S, Matsuzaki M, Nakada T, Kato S, Misawa K (2009) Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes. Mol Phylogenet Evol 53:872–880

    Article  PubMed  Google Scholar 

  • O'Malley MA (2010) The first eukaryote cell: an unfinished history of contestation. Stud Hist Philos Biol Biomed Sci 41:212–224

    PubMed  Google Scholar 

  • Palmer JD (2003) The symbiotic birth and spread of plastids: how many times and whodunnit? J Phycol 39:4–11

    Article  CAS  Google Scholar 

  • Parfrey LW, Barbero E, Lasser E, Dunthorn M, Bhattacharya D, Patterson DJ, Katz LA (2006) Evaluating support for the current classification of eukaryotic diversity. PLoS Genet 2:e220

    Article  PubMed  CAS  Google Scholar 

  • Parfrey LW, Grant J, Tekle YI, Lasek-Nesselquist E, Morrison HG, Sogin ML, Patterson DJ, Katz LA (2010) Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Syst Biol 59:518–533

    Article  PubMed  Google Scholar 

  • Patron NJ, Inagaki Y, Keeling PJ (2007) Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Curr Biol 17:887–891

    Article  PubMed  CAS  Google Scholar 

  • Perez-Brocal V, Clark AG (2008) Analysis of two genomes from the mitochondrion-like organelle of the intestinal parasite Blastocystis: complete sequences, gene content and genome organization. Mol Biol Evol 25:2475–2482

    Article  PubMed  CAS  Google Scholar 

  • Philippe H, Germot A (2000) Phylogeny of eukaryotes based on ribosomal RNA: long-branch attraction and models of sequence evolution. Mol Biol Evol 17:830–834

    PubMed  CAS  Google Scholar 

  • Philippe H, Zhou Y, Brinkmann H, Rodrigue N, Delsuc F (2005) Heterotachy and long-branch attraction in phylogenetics. BMC Evol Biol 5:50

    Article  PubMed  CAS  Google Scholar 

  • Pierce SK, Curtis NE, Hanten JJ, Boerner SL, Schwarts JL (2007) Transfer, integration and expression of functional nuclear genes between multicellular species. Symbiosis 43:57–64

    CAS  Google Scholar 

  • Poole AM, Penny D (2007) Evaluating hypotheses for the origin of eukaryotes. Bioessays 29:74–84

    Article  PubMed  Google Scholar 

  • Prechtl J, Kneip C, Lockhart P, Wenderoth K, Maier UG (2004) Intracellular spheroid bodies of Rhopalodia gibba have nitrogen-fixing apparatus of cyanobacterial origin. Mol Biol Evol 21:1477–1481

    Article  PubMed  CAS  Google Scholar 

  • Raff RA, Mahler HR (1972) The non symbiotic origin of mitochondria. Science 177:575–582

    Article  PubMed  CAS  Google Scholar 

  • Raven PH (1970) A multiple origin for plastids and mitochondria. Science 169:641–646

    Article  PubMed  CAS  Google Scholar 

  • Reith M, Munholland J (1995) Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. Plant Mol Biol Rep 13:333–335

    Article  CAS  Google Scholar 

  • Rensing SA, Goddemeier M, Hofmann CJ, Maier UG (1994) The presence of a nucleomorph hsp70 gene is a common feature of Cryptophyta and Chlorarachniophyta. Curr Genet 26:451–455

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Prieto A, Weber AP, Bhattacharya D (2007) The origin and establishment of the plastid in algae and plants. Annu Rev Genet 41:147–168

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Prieto A, Yoon HS, Moustafa A, Yang EC, Andersen RA, Boo SM, Nakayama T, Ishida K, Bhattacharya D (2010) Differential gene retention in plastids of common recent origin. Mol Biol Evol 27:1530–1537

    Article  PubMed  CAS  Google Scholar 

  • Ris H (1961) Ultrastructure and molecular organization of genetic systems. Can J Genet Cytol 3:95–120

    PubMed  CAS  Google Scholar 

  • Rodriguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Loffelhardt W, Bohnert HJ, Philippe H, Lang BF (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15:1325–1330

    Article  PubMed  CAS  Google Scholar 

  • Roger AJ (1999) Reconstructing early events in eukaryotic evolution. Am Nat 154:S146–S163

    Article  PubMed  Google Scholar 

  • Roger AJ, Clark CG, Doolittle WF (1996) A possible mitochondrial gene in the early-branching amitochondriate protist Trichomonas vaginalis. Proc Natl Acad Sci USA 93:14618–14622

    Article  PubMed  CAS  Google Scholar 

  • Roger AJ, Svard SG, Tovar J, Clark CG, Smith MW, Gillin FD, Sogin ML (1998) A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc Natl Acad Sci USA 95:229–234

    Article  PubMed  CAS  Google Scholar 

  • Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ (2007) The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Mol Biol Evol 24:54–62

    Article  PubMed  CAS  Google Scholar 

  • Roos DS, Crawford MJ, Donald RGK, Kissinger JC, Klimczak LJ, Striepen B (1999) Origin, targeting, and function of the apicomplexan plastid. Curr Opin Microbiol 2:426–432

    Article  PubMed  CAS  Google Scholar 

  • Rumpho ME, Worful JM, Lee J, Kannan K, Tyler MS, Bhattacharya D, Moustafa A, Manhart JR (2008) Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica. Proc Natl Acad Sci USA 105:17867–17871

    Article  PubMed  CAS  Google Scholar 

  • Rumpho ME, Pelletreau KN, Moustafa A, Bhattacharya D (2011) The making of a photosynthetic animal. J Exp Biol 214:303–311

    Article  PubMed  Google Scholar 

  • Sagan L (1967) On the origin of mitosing cells. J Theoret Biol 14:225–274

    Article  CAS  Google Scholar 

  • Sanchez-Puerta MV, Delwiche CF (2008) A hypothesis for plastid evolution in chromalveolates. J Phycol 44:1097–1107

    Article  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Sapp J (1990) Symbiosis in evolution: an origin story. Endocytobiosis and Cell Res 7:5–36

    Google Scholar 

  • Sapp J (1994) Evolution by association: a history of symbiosis. Oxford University Press, New York

    Google Scholar 

  • Sapp J (2009) The New foundations of evolution. Oxford University Press, New York

    Google Scholar 

  • Schimper AFW (1883) Ueber die Entwickelung der Chlorophyllkörner und Farbkörper. Bot Zeit 41:105–114, 121–131, 137–146, 153–162

    Google Scholar 

  • Schwartz JA, Curtis NE, Pierce SK (2010) Using algal transcriptome sequences to identify transferred genes in the sea slug, Elysia chlorotica. Evol Biol 37:29–37

    Article  Google Scholar 

  • Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77:1153–1161

    Article  PubMed  CAS  Google Scholar 

  • Simpson AGB, Roger AJ (2004) The real 'kingdoms' of eukaryotes. Curr Biol 14:R693–R696

    Article  PubMed  CAS  Google Scholar 

  • Sogin ML (1997) History assignment: when was the mitochondrion founded? Curr Opp Genet Dev 7:792–799

    Article  CAS  Google Scholar 

  • Sogin ML, Gunderson JH, Elwood HJ, Alonso RA, Peattie DA (1989) Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science 243:75–77

    Article  PubMed  CAS  Google Scholar 

  • Stahl DA, Lane DJ, Olsen GJ, Pace NR (1985) Characterization of a Yellowstone hot spring microbial community by 5S rRNA sequences. Appl Environ Microbiol 49:1379–1384

    PubMed  CAS  Google Scholar 

  • Stanier RY (1970) Some aspects of the biology of cells and their possible evolutionary significance. In: Charles HP, Knight BD (eds) Organization and control in prokaryotic and eukaryotic cells: 20th symposium of the Society for General Microbiology. Cambridge University Press, London, pp 1–38

    Google Scholar 

  • Stechmann A, Hamblin K, Perez-Brocal V, Gaston D, Richmond GS, van der Giezen M, Clark CG, Roger AJ (2008) Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes. Curr Biol 18:580–585

    Article  PubMed  CAS  Google Scholar 

  • Stiller JW (2007) Plastid endosymbiosis, genome evolution and the origin of green plants. Trends Plant Sci 12:391–396

    Article  PubMed  CAS  Google Scholar 

  • Stiller JW, Hall BD (1997) The origin of red algae: implications for plastid evolution. Proc Natl Acad Sci USA 94:4520–4525

    Article  PubMed  CAS  Google Scholar 

  • Stiller JW, Reel DC, Johnson JC (2003) A single origin of plastids revisited: convergent evolution in organellar genome content. J Phycol 39:95–105

    Article  CAS  Google Scholar 

  • Stoebe B, Kowallik KV (1999) Gene-cluster analysis in chloroplast genomics. Trends Genet 15:344–347

    Article  PubMed  CAS  Google Scholar 

  • Tachezy J, Dolezal P (2007) Iron-Sulfure proteins and iron-sulfur cluster assembly in organisms with hydrogenosomes and mitosomes. In: Martin WF, Müller M (eds) Origin of mitochondria and hydrogenosomes. Springer, Berlin, pp 105–133

    Chapter  Google Scholar 

  • Tanifuji G, Onodera NT, Wheeler TJ, Dlutek M, Donaher N, Archibald JM (2011) Complete nucleomorph genome sequence of the non-photosynthetic alga Cryptomonas paramecium reveals a core nucleomorph gene set. Genome Biol Evol 3:44–54

    Article  PubMed  CAS  Google Scholar 

  • Taylor FJR (1974) Implications and extensions of the serial endosymbiosis theory of the origin of eukaryotes. Taxon 23:229–258

    Article  Google Scholar 

  • Taylor FJR (1976) Autogenous theories for the origin of eukaryotes. Taxon 23:377–390

    Article  Google Scholar 

  • Theissen U, Martin W (2006) The difference between organelles and endosymbionts. Curr Biol 16:R1016–R1017, author reply R1017-1018

    Article  PubMed  CAS  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135

    Article  PubMed  CAS  Google Scholar 

  • Tomas R, Cox E (1973) Observations on the symbiosis of Peridinium balticum and its intracellular alga. I. Ultrastructure. J Phycol 9:304–323

    Google Scholar 

  • Tovar J (2007) Mitosomes of parasitic protozoa: biology and evolutionary significance. In: Martin WF, Muller M (eds) Origin of mitochondria and hydrogenosomes. Springer, Berlin, pp 277–300

    Chapter  Google Scholar 

  • Tovar J, Fischer A, Clark CG (1999) The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 32:1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Tovar J, Leon-Avila G, Sanchez LB, Sutak R, Tachezy J, van der Giezen M, Hernandez M, Muller M, Lucocq JM (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426:172–176

    Article  PubMed  CAS  Google Scholar 

  • Tringe SG, Rubin EM (2005) Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet 6:805–814

    Article  PubMed  CAS  Google Scholar 

  • Tsaousis AD, Kunji ERS, Goldberg AV, Lucocq JM, Hirt RP, Embley TM (2008) A novel route for ATP acquisition by the remnant mitochondria of Encephalitozoon cuniculi. Nature 453:553–557

    Article  PubMed  CAS  Google Scholar 

  • Turner S (1997) Molecular systematics of oxygenic photosynthetic bacteria. Pl Syst Evol [Suppl] 11:13–52

    CAS  Google Scholar 

  • Turner S, Pryer KM, Miao VP, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46:327–338

    Article  PubMed  CAS  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    Article  PubMed  CAS  Google Scholar 

  • Van de Peer Y, Ben Ali A, Meyer A (2000) Microsporidia: accumulating molecular evidence that a group of amitochondriate and suspectedly primitive eukaryotes are just curious fungi. Gene 246:1–8

    Article  PubMed  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  PubMed  CAS  Google Scholar 

  • Wägele H, Deusch O, Handeler K, Martin R, Schmitt V, Christa G, Pinzger B, Gould SB, Dagan T, Klussmann-Kolb A, Martin W (2011) Transcriptomic evidence that longevity of acquired plastids in the photosynthetic slugs Elysia timida and Plakobranchus ocellatus does not entail lateral transfer of algal nuclear genes. Mol Biol Evol 28:699–706

    Article  PubMed  CAS  Google Scholar 

  • Waller RF, McFadden GI (2005) The apicoplast: a review of the derived plastid of apicomplexan parasites. Curr Issues Mol Biol 7:57–79

    PubMed  Google Scholar 

  • Whatley JM, John P, Whatley FR (1979) From extracellular to intracellular: the establishment of mitochondria and chloroplasts. Proc R Soc Lond B 204:165–187

    Article  PubMed  CAS  Google Scholar 

  • Williams BA, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418:865–869

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain. The primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms, proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Article  PubMed  CAS  Google Scholar 

  • Wolfe GR, Cunningham FX, Durnford DG, Green BR, Gantt E (1995) Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. Nature 367:566–568

    Article  Google Scholar 

  • Yoon HS, Reyes-Prieto A, Melkonian M, Bhattacharya D (2006) Minimal plastid genome evolution in the Paulinella endosymbiont. Curr Biol 16:R670–R672

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Zuccarello G, Bhattacharya D (2010) Evolutionary history and taxonomy of red algae. In: Seckback J, Chapman DJ (eds) Red algae in the genomic age, vol 13. Cellular origin, life in extreme habitats and astrobiology. Springer, New York, pp 25–42

    Google Scholar 

  • Zablen LB, Kissil MS, Woese CR, Buetow DE (1975) Phylogenetic origin of the chloroplast and prokaryotic nature of its ribosomal RNA. Proc Natl Acad Sci USA 72:2418–2422

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I sincerely thank Michael Gray and Ford Doolittle, in whose laboratories some of the first molecular data in support of the endosymbiont hypothesis for the origins of plastids and mitochondria was obtained, for support and discussion. Andrew Roger, Eunsoo Kim and two anonymous reviewers are acknowledged for providing helpful comments on an earlier version of this manuscript, and Geoff McFadden and Robert W. Lee are thanked for discussion of the symbiosis literature. Errors of fact pertaining to the extensive literature on the history of research in symbiosis and mitochondrial and plastid evolution should be attributed solely to the author. Research in the Archibald Laboratory is supported by operating grants from the Natural Sciences and Engineering Research Council of Canada, the Canadian Institutes of Health Research (CIHR), and the Centre for Comparative Genomics and Evolutionary Bioinformatics at Dalhousie University. Financial support from the Canadian Institute for Advanced Research (CIFAR), Program in Integrated Microbial Biodiversity, is also acknowledged, as is salary support in the form of a New Investigator Award from CIHR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Archibald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Archibald, J.M. Origin of eukaryotic cells: 40 years on. Symbiosis 54, 69–86 (2011). https://doi.org/10.1007/s13199-011-0129-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-011-0129-z

Keywords

Navigation