Symbiosis

, 54:55 | Cite as

Wolbachia infection increases recapture rate of field-released Drosophila melanogaster

  • Eric P. Caragata
  • Kathryn M. Real
  • Myron P. Zalucki
  • Elizabeth A. McGraw
Article

Abstract

Wolbachia pipientis is a commonly occurring endosymbiont with well-characterised effects on host reproductive biology associated with its infection of the gonads. Wolbachia infections are also widespread in somatic tissues and consequently they have the potential to play a much broader role in host biology. Recently, Wolbachia was shown to alter the locomotion of Drosophila melanogaster in response to food cues in the laboratory. To determine whether this laboratory-based phenotype might translate to real differences for insects in the field, we performed a simple mark-release-recapture experiment with Wolbachia-infected D. melanogaster in a forested habitat. We demonstrate that infected flies are recaptured at twice the rate of uninfected flies, although infection does not affect the distance traveled by those flies recaptured. The differences in recapture could be explained by infection-induced changes in physiology or behavior. If generalizable, such changes may affect the interpretation of behavioral studies for Wolbachia-infected insects and have potential implications for the dynamics of Wolbachia infections in natural populations, including situations where Wolbachia-infected insects are being released for biological control.

Keywords

Symbiont Insect Dispersal Locomotion 

Notes

Acknowledgments

This work was supported by a UQ development grant to Elizabeth McGraw. The authors wish to thank Prof Ary Hoffmann for advice on trap line design and Carol Oesch-Lawson for providing assistance in preparing flies for field releases.

References

  1. Ballard JW, Melvin R (2007) Tetracycline treatment influences mitochondrial metabolism and mtDNA density two generations after treatment in Drosophila. Insect Mol Biol 16:799–802PubMedCrossRefGoogle Scholar
  2. Bordenstein SR, O’Hara FP, Werren JH (2001) Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature 409:707–710PubMedCrossRefGoogle Scholar
  3. Braig HR, Zhou W, Dobson SL, O’Neill SL (1998) Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacteriol 180:2373–2378PubMedGoogle Scholar
  4. Brownlie JC, Cass BN, Riegler M, Witsenburg JJ, Iturbe-Ormaetxe I et al (2009) Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PloS Pathog 5:e1000368PubMedCrossRefGoogle Scholar
  5. Cook PE, McMeniman CJ, O’Neill SL (2008) Modifying insect population age structure to control vector-borne disease. Transgenesis and the Management of Vector-Borne Disease 627:126–140CrossRefGoogle Scholar
  6. Craft KJ, Pauls SU, Darrow K, Miller SE, Hebert PDN et al (2010) Population genetics of ecological communities with DNA barcodes: an example from New Guinea Lepidoptera. Proc Natl Acad Sci USA 107:5041–5046PubMedCrossRefGoogle Scholar
  7. de Crespigny FE, Wedell N (2006) Wolbachia infection reduces sperm competitive ability in an insect. Proc Biol Sci 273:1455–1458CrossRefGoogle Scholar
  8. de Crespigny FE, Pitt TD, Wedell N (2006) Increased male mating rate in Drosophila is associated with Wolbachia infection. J Evol Biol 19:1964–1972PubMedCrossRefGoogle Scholar
  9. Dobson SL, Bourtzis K, Braig HR, Jones BF, Zhou W et al (1999) Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochem Mol Biol 29:153–160PubMedCrossRefGoogle Scholar
  10. Drummond CS, Xue HJ, Yoder JB, Pellmyr O (2010) Host-associated divergence and incipient speciation in the yucca moth Prodoxus coloradensis (Lepidoptera: Prodoxidae) on three species of host plants. Heredity 105:183–196PubMedCrossRefGoogle Scholar
  11. Evans O, Caragata EP, McMeniman CJ, Woolfit M, Green DC et al (2009) Increased locomotor activity and metabolism of Aedes aegypti infected with a life-shortening strain of Wolbachia pipientis. J Exp Biol 212:1436–1441PubMedCrossRefGoogle Scholar
  12. Fleury F, Vavre F, Ris N, Fouillet P, Bouletreau M (2000) Physiological cost induced by the maternally-transmitted endosymbiont Wolbachia in the Drosophila parasitoid Leptopilina heterotoma. Parasitol 121(Pt 5):493–500Google Scholar
  13. Ghedin E, Hailemariam T, DePasse JV, Zhang X, Oksov Y et al (2009) Brugia malayi gene expression in response to the targeting of the Wolbachia endosymbiont by tetracycline treatment. PloS Negl Trop Dis 3:e525PubMedCrossRefGoogle Scholar
  14. Goodacre SL, Martin OY, Bonte D, Hutchings L, Woolley C et al (2009) Microbial modification of host long-distance dispersal capacity. BMC Biol 7:32PubMedCrossRefGoogle Scholar
  15. Hedges LM, Brownlie JC, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322:702PubMedCrossRefGoogle Scholar
  16. Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia?—a statistical analysis of current data. FEMS Microbiol Lett 281:215–220PubMedCrossRefGoogle Scholar
  17. Hlaing T, Tun-Lin W, Somboon P, Socheat D, Setha T et al (2010) Spatial genetic structure of Aedes aegypti mosquitoes in mainland Southeast Asia. Evol Appl 3:319–339CrossRefGoogle Scholar
  18. Hoffmann AA, Turelli M, Simmons GM (1986) Unidirectional incompatibility between populations of Drosophila simulans. Evolution 40:692–701CrossRefGoogle Scholar
  19. Hoffmann AA, Clancy D, Duncan J (1996) Naturally-occurring Wolbachia infection in Drosophila simulans that does not cause cytoplasmic incompatibility. Heredity 76(Pt 1):1–8PubMedCrossRefGoogle Scholar
  20. Hoffmann AA, Ratna E, Sgro CM, Barton M, Blacket M et al (2007) Antagonistic selection between adult thorax and wing size in field released Drosophila melanogaster independent of thermal conditions. J Evol Biol 2219–2227Google Scholar
  21. Jaenike J, Dyer KA, Cornish C, Minhas MS (2006) Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biol 4:1852–1862CrossRefGoogle Scholar
  22. Kambris Z, Cook PE, Phuc HK, Sinkins SP (2009) Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science 326:134–136PubMedCrossRefGoogle Scholar
  23. Lehrian S, Balint M, Haase P, Pauls SU (2010) Genetic population structure of an autumn-emerging caddisfly with inherently low dispersal capacity and insights into its phylogeography. J N Am Benthol Soc 29:1100–1118CrossRefGoogle Scholar
  24. Liebhold AM, Tobin PC (2008) Population ecology of insect invasions and their management. Ann Rev Entomol 53:387–408CrossRefGoogle Scholar
  25. Loeschcke V, Hoffmann AA (2007) Consequences of heat hardening on a field fitness component in Drosophila depend on environmental temperature. Am Nat 169:175–183PubMedCrossRefGoogle Scholar
  26. Markow TA, Castrezana S (2000) Dispersal in cactophilic Drosophila. Oikos 89:378–386CrossRefGoogle Scholar
  27. McInnis DO, Schaffer HE, Mettler LE (1982) Field dispersal and population sizes of native Drosophila from North Carolina. Am Nat 119:319–330CrossRefGoogle Scholar
  28. Miller WJ, Ehrman L, Schneider D (2010) Infectious speciation revisted: impact of symbiont-depletion on female fitness and mating behavior of Drosophila paulistorum. PLoS Pathog 6:e1001214PubMedCrossRefGoogle Scholar
  29. Min K, Benzer S (1997) Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc Natl Acad Sci USA 94:10792–10796PubMedCrossRefGoogle Scholar
  30. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu GJ, Pyke AT et al (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium. Cell 139:1268–1278PubMedCrossRefGoogle Scholar
  31. Olsen K, Reynolds KT, Hoffmann AA (2001) A field cage test of the effects of the endosymbiont Wolbachia on Drosophila melanogaster. Heredity 86:731–737PubMedCrossRefGoogle Scholar
  32. O’Neill SL, Hoffmann AA, Werren JH (eds) (1997) Influential passengers: inherited microorganisms and arthropod reproduction. Oxford University Press, OxfordGoogle Scholar
  33. Osborne SE, Leong YS, O’Neill SL, Johnson KN (2009) Variation in antiviral protection mediated by different Wolbachia strains in Drosophila simulans. PloS Pathog 5:e1000656PubMedCrossRefGoogle Scholar
  34. Peng Y, Nielsen JE, Cunningham JP, McGraw EA (2008) Wolbachia infection alters olfactory-cued locomotion in Drosophila spp. Appl Environ Microbiol 74:3943–3948PubMedCrossRefGoogle Scholar
  35. Riegler M, Sidhu M, Miller W, O’Neill SL (2005) Evidence for a global Wolbachia replacement in Drosophila melanogaster. Curr Biol 15:1428–1433PubMedCrossRefGoogle Scholar
  36. Turelli M (2010) Cytoplasmic incompatibility in populations with overlapping generations. Evolution 64:232–241PubMedCrossRefGoogle Scholar
  37. Turelli M, Hoffmann AA (1991) Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353:440–442PubMedCrossRefGoogle Scholar
  38. Weeks AR, Turelli M, Harcombe WR, Reynolds KT, Hoffmann AA (2007) From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PloS Biol 5:997–1005CrossRefGoogle Scholar
  39. Wertheim B, Allemand R, Vet LE, Dicke M (2006) Effects of aggregation pheromone on individual behaviour and food web interactions: a field study on Drosophila. Ecol Entomol 31:216–226CrossRefGoogle Scholar
  40. Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R et al (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2:E69PubMedCrossRefGoogle Scholar
  41. Yamada R, Floate KD, Riegler M, O’Nein SL (2007) Male development time influences the strength of Wolbachia-induced cytoplasmic incompatibility expression in Drosophila melanogaster. Genetics 177:801–808PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Eric P. Caragata
    • 1
  • Kathryn M. Real
    • 1
  • Myron P. Zalucki
    • 1
  • Elizabeth A. McGraw
    • 1
  1. 1.School of Biological SciencesThe University of QueenslandSt. LuciaAustralia

Personalised recommendations