Symbiosis

, 53:101 | Cite as

Anthropogenic effects on interaction outcomes: examples from insect-microbial symbioses in forest and savanna ecosystems

  • Diana L. Six
  • Michael Poulsen
  • Allison K. Hansen
  • Michael J. Wingfield
  • Jolanda Roux
  • Paul Eggleton
  • Bernard Slippers
  • Timothy D. Paine
Article

Abstract

The influence of humans on ecosystem dynamics has been, and continues to be, profound. Anthropogenic effects are expected to amplify as human populations continue to increase. Concern over these effects has given rise to a large number of studies focusing on impacts of human activities on individual species or on biotic community structure and composition. Lacking are studies on interactions, particularly mutualisms. Because of the role of mutualisms in ecosystem stability, such studies are critically needed if we are to begin to better understand and predict the responses of ecosystems to anthropogenic change. Most organisms are involved in at least one mutualism, and many in several. Mutualisms facilitate the ability of partners to exploit particular habitats and resources, and play a large role in determining ecological boundaries. When change disrupts, enhances, or introduces new organisms into a mutualism, the outcome and stability of the original partnership(s) is altered as are effects of the symbiosis on the community and ecosystem as a whole. In this paper, using examples from six microbe-insect mutualisms in forest and savanna settings, we showcase how varied and complex the responses of mutualisms can be to an equally varied set of anthropogenic influences. We also show how alterations of mutualisms may ramify throughout affected systems. We stress that researchers must be cognizant that many observed changes in the behaviors, abundances, and distributions of organisms due to human activities are likely to be mediated by mutualists which may alter predictions and actual outcomes in significant ways.

Key words

Climate change Fragmentation Exotic species Mutualism Scolytinae Attini Macrotermitidae Siricidae Hemiptera 

References

  1. Aanen DK, Boomsma JJ (2006) Social-insect fungus farming. Curr Biol 16:R1014–R1016PubMedCrossRefGoogle Scholar
  2. Aanen DK, Eggleton P (2005) Fungus-growing termites originated in African rain forest. Curr Biol 15:851–855PubMedCrossRefGoogle Scholar
  3. Aanen DK, Eggleton P, Rouland-Lefevre C, Guldberg-Frøslev T, Rosendahl S, Boomsma JJ (2002) The evolution of fungus-growing termites and their mutualistic fungal symbionts. PNAS 99:14887–14892PubMedCrossRefGoogle Scholar
  4. Abramowski D, Currie CR, Poulsen M (2011) Caste specialization in behavioral defenses against fungus garden parasites in Acromyrmex octospinosus leaf-cutting ants. Insect Soc 58:65–75CrossRefGoogle Scholar
  5. Adams AS, Six DL (2006) Temporal variation in mycophagy and prevalence of fungi associated with developmental stages of the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytinae, Curculionidae). Environ Entomol 36:64–72CrossRefGoogle Scholar
  6. Adams AS, Six DL (2008) Detection of host habitat by parasitoids using cues associated with mycangial fungi of the mountain pine beetle, Dendroctonus ponderosae. Can Entomol 140:124–127CrossRefGoogle Scholar
  7. Adams RMM, Mueller UG, Holloway AK, Green AM, Narozniak J (2000) Garden sharing and garden stealing in fungus-growing ants. Naturwissenschaften 87:491–493PubMedCrossRefGoogle Scholar
  8. Aguilar R, Ashworth L, Galetto L, Aizen MA (2006) Plant reproductive susceptibility to habitat fragmentation: Review and synthesis through meta-analysis. Ecol Lett 9:968–980PubMedCrossRefGoogle Scholar
  9. Alfaro RI, Humble LM, Gonzalez P, Villaverde R, Allegro G (2007) The threat of the ambrosia beetle Megaplatypus mutatus (Chapuis) (=Platypus mutatus Chapuis) to world poplar resources. Forestry 80:471–479CrossRefGoogle Scholar
  10. Allen JM, Reed DL, Perotti MA, Braig HR (2007) Evolutionary relationships of “Candidatus Riesia spp.” endosymbiotic Enterobacteriaceae living within hematophagous primate lice. Appl Environ Microbiol 73:1659–1664PubMedCrossRefGoogle Scholar
  11. Amman GD (1973) Population changes of the mountain pine beetle in relation to elevation. Environ Entomol 2:541–548Google Scholar
  12. Angalet GW, Fuester R (1977) The Aphidius parasites of the pea aphid Acyrthosiphon pisum in the eastern half of the United States. Ann Entomol Soc Am 70:87–96Google Scholar
  13. Autuori M (1956) La fondation de sociétés chez les fourmis champignonnistes du genre “Atta”. In: Autuori M, Bénassy MP, Benoit J (eds) L’instinct dans le comportement des animaux et de l’homme. J. Masson et Cie, Paris, pp 77–104Google Scholar
  14. Ayres MP, Wilkens RT, Ruel JJ (2000) Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi. Ecology 81:2198–2210CrossRefGoogle Scholar
  15. Baker AC (2003) Flexibility and specificity in coral—algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Ann Rev Ecol Evol Syst 34:661–689CrossRefGoogle Scholar
  16. Batra LR (1967) Ambrosia fungi: a taxonomic revision and nutritional studies of some species. Mycologia 59:967–1017CrossRefGoogle Scholar
  17. Baumann P (2005) Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 59:155–189PubMedCrossRefGoogle Scholar
  18. Baumann P, Baumann L, Lai C-Y, Rouhbakhsh D, Moran NA (1995) Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annu Rev Microbiol 49:55–94PubMedCrossRefGoogle Scholar
  19. Baumann P, Moran NA, Baumann L (2000) Bacteriocyte-associated endosymbionts of insects. In: Workin MD (ed) The prokaryotes. Springer, New York, pp 403–438Google Scholar
  20. Beaver RA (1989) Insect-fungus relationships in the bark and ambrosia beetles. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds) Insect-fungus interactions. Academic, London, pp 121–143Google Scholar
  21. Beaver RA, Loyttyniemi K (1985) Bark and ambrosia beetles of Zambia. Rev Zool Afr 99:63–85Google Scholar
  22. Bedding RA, Akhurst RJ (1978) Geographical distribution and host preferences of Deladenus species (Nematoda: Neotylenchidae) parasitic in siricid woodwasps and associated hymenopterous parasitoids. Nematologica 24:286–294CrossRefGoogle Scholar
  23. Bedding RA, Iede ET (2005) Application of Beddingia siricidicola for Sirex woodwasp control. In: Grewal PS, Ehlers R, Shapiro-Ilan DI (eds) Nematodes as biocontrol agents. CAB International, UK, pp 385–400CrossRefGoogle Scholar
  24. Bentz BJ, Schen-Lagenheim G (2007) The mountain pine beetle and whitebark pine walz: Has the music changed? In: Goheen EM, Sniezko RA (eds.) Proc. conference on whitebark pine: a pacific coast perspective. pp. 43–50. R6-NR-FHP-2007-01Google Scholar
  25. Bentz BJ, Six DL (2006) Ergosterol content of four fungal symbionts associated with Dendroctonus ponderosae and D. rufipennis (Coleoptera: Curculionidae, Scolytinae). Ann Entomol Soc Am 99:189–194CrossRefGoogle Scholar
  26. Bhagwandin HO (1993) The shothole borer: an ambrosia beetle of concern for chestnut orcharding in the Pacific Northwest. Northern Nut Growers Assn Ann Rep 84:168–177Google Scholar
  27. Blackwell M, Jones K (1997) Taxonomic diversity and interactions of insect associated Ascomycetes. Biodivers Conserv 6:689–699CrossRefGoogle Scholar
  28. Bleiker K, Six DL (2007) Dietary benefits of fungal associates to an eruptive herbivore: potential implications of multiple associates on host population dynamics. Environ Entomol 36:1384–1396PubMedCrossRefGoogle Scholar
  29. Bleiker K, Six DL (2008) Competition and coexistence in a multi-partner mutualism: interactions between two fungal symbionts of the mountain pine beetle in beetle-attacked trees. Microb Ecol 57:191–202PubMedCrossRefGoogle Scholar
  30. Boone CK, Six DL, Zheng Y, Raffa KF (2008) Parasitoids and dipteran predators exploit volatiles from microbial symbionts to locate bark beetles. Environ Entomol 37:150–161PubMedCrossRefGoogle Scholar
  31. Boucher DH, James S, Keeler KH (1982) The ecology of mutualism. Annu Rev Ecol Syst 13:315–347CrossRefGoogle Scholar
  32. Brasier C (2001) Rapid evolution of introduced species via interspecific hybridization. Bioscience 51:123–133CrossRefGoogle Scholar
  33. Bressan A, Sémétey O, Arneodo J, Lherminier J, Boudon-Padieu E (2009) Vector Transmission of a plant-pathogenic bacterium in the Arsenophonus clade sharing ecological traits with facultative insect endosymbionts. Phytopathol 99:1289–1296CrossRefGoogle Scholar
  34. Bridges R (1983) Mycangial fungi of Dendroctonus frontalis (Coleoptera: Scolytidae) and their relationship to beetle population trends. Environ Entomol 12:858–861Google Scholar
  35. Bronstein J (1994) Our current understanding of mutualism. Quart Rev Biol 69:31–51CrossRefGoogle Scholar
  36. Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience Publishers Inc., New YorkGoogle Scholar
  37. Cafaro MJ, Currie CR (2005) Phylogenetic analysis of mutualistic filamentous bacteria associated with fungus-growing ants. Can J Microbiol 51:441–446PubMedCrossRefGoogle Scholar
  38. Cafaro MJ, Poulsen M, Little AEF, Price SL, Gerardo NM, Wong B, Stuart AE, Larget B, Currie CR (2011) Specificity in the symbiotic association between Fungus-growing ants and protective Pseudonocardia bacteria. doi:10.1098/rspb.2010.2118
  39. Carlile MJ, Watkinson SC, Gooday GW (2001) The fungi. AcademicGoogle Scholar
  40. Carroll AL, Taylor SW, Regniere J, Safryanyik L (2004) Effects of climate change on range expansion by the mountain pine beetle in British Columbia. In: Proceedings mountain pine beetle symposium: challenges and solutions. pp. 223–232. Kelowna, British Columbia, Canada. Pacific Forestry Centre Information Report BC-X-399Google Scholar
  41. Cassis G, Gross GF (1995) Hemiptera: heteroptera (Coleorrhyncha to Cimicomorpha). In: Zoological catalogue of Australia, vol 27.3A. CSIRO, Melbourne p 752Google Scholar
  42. Chapela IH, Rehner SA, Schultz TR, Mueller UG (1994) Evolutionary history of the symbiosis between fungus-growing ants and their fungi. Science 266:1691–1694PubMedCrossRefGoogle Scholar
  43. Chen DQ, Purcell AH (1997) Occurrence and transmission of facultative endosymbionts in aphids. Curr Microbiol 34:220–225PubMedCrossRefGoogle Scholar
  44. Chen D, Montllor CB, Purcell AH (2000) Fitness effects of two facultative endosymbiontic bacterial on the pea aphid, Acyrthosiphon pisum, and the blue alfalfa aphid, A. kodoi. Entomol Exp Appl 95:315–323CrossRefGoogle Scholar
  45. Coppedge BR, Stephen FM, Felton GW (1995) Variation in female southern pine beetle size and lipid content in relation to fungal associates. Can Entomol 127:145–154CrossRefGoogle Scholar
  46. Costanza R (1997) The value of the world’s ecosystem services and national capital. Nature 387:253–260CrossRefGoogle Scholar
  47. Coutts MP (1969) The mechanism of pathogenicity of Sirex noctilio on Pinus radiata II. Effects of S. noctilio mucus. Aust J Biol Sci 22:1153–1161Google Scholar
  48. Coyle DR, Booth DC, Wallace MS (2005) Ambrosia beetle (Coleoptera: Scolytidae) species, flight, and attack on living eastern cottonwood trees. J Econ Entomol 98:2049–2057PubMedCrossRefGoogle Scholar
  49. Currie CR (2001) Prevalence and impact of a virulent parasite on a tripartite mutualism. Oecologia 128:99–106CrossRefGoogle Scholar
  50. Currie CR, Stuart AE (2001) Weeding and grooming of pathogens in agriculture by ants. Proc R Soc Lond B 268:1033–1039CrossRefGoogle Scholar
  51. Currie CR, Mueller UG, Malloch D (1999a) The agricultural pathology of ant fungus gardens. PNAS 96:7998–8002PubMedCrossRefGoogle Scholar
  52. Currie CR, Scott JA, Summerbell RC, Malloch D (1999b) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701–704CrossRefGoogle Scholar
  53. Currie CR, Bot ANM, Boomsma JJ (2003a) Experimental evidence of a tripartite mutualism: bacteria protect ant fungal gardens from specialized parasites. Oikos 101:91–102CrossRefGoogle Scholar
  54. Currie CR, Wong B, Stuart A, Schultz T, Rehner S, Mueller U, Sung G, Spatafora J, Straus N (2003b) Ancient tripartite coevolution in the attine ant-microbe symbiosis. Science 299:386–388PubMedCrossRefGoogle Scholar
  55. Currie CR, Poulsen M, Mendenhall J, Boomsma JJ, Billen J (2006) Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 311:81–83PubMedCrossRefGoogle Scholar
  56. Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240CrossRefGoogle Scholar
  57. Dahlsten DL, Daane KM, Paine TD, Sime KR, Lawson AB, Rowney DL, Roltsch WJ, Andrews JW Jr, Kabashima JN, Shaw DA, Robb KL, Downer JA, Geisel PM, Chaney WE, Ingels CA, Varela LG, Bianchi ML, Taylor G (2005) Imported parasitic wasp helps control red gum lerp psyllid. Cal Agr 4:229–234CrossRefGoogle Scholar
  58. Dale VH, Joyce LA, McNulty S, Neilson NP, Ayres MP, Flannagan MD, Hanson PJ, Irland LC, Lugo AE, Petersen CJ, Simberloff D, Swanson FJ, Stocks BJ, Wotton BM (2001) Climate change and forest disturbances. Bioscience 51:723–734CrossRefGoogle Scholar
  59. Darlington JPEC, Dransfield RD (1987) Size relationships in nest populations and mound parameters in the termite Macrotermes-Michaelseni in Kenya. Insect Soc 34:165–180CrossRefGoogle Scholar
  60. Davies RG, Eggleton P, Jones DT, Gathorne-Hardy FJ, Hernandez LM (2003) Evolution of termite functional diversity: analysis and synthesis of local ecological and regional influences on local species richness. J Biogeogr 30:847–877CrossRefGoogle Scholar
  61. Davis AJ, Lawton JH, Shorrocks B, Jenkinson LS (1998) Individualistic species responses invalidate simple physiological models of community dynamics under global environmental change. J Anim Ecol 67:600–612CrossRefGoogle Scholar
  62. Degnan PH, Moran NA (2008) Diverse phage-encoded toxins in a protective insect endosymbiont. Appl Environ Microbiol 74:6782–6791PubMedCrossRefGoogle Scholar
  63. Degnan PH, Yu Y, Sisneros N, Wing RA, Moran NA (2009) Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors. PNAS 106:9063–9068PubMedCrossRefGoogle Scholar
  64. Del-Claro K, Torezan-Silingardi HM (2009) Insect-plant interactions: new pathways to a better comprehension of ecological communities in neotropical savannas. Neotrop Entomol 38:159–164PubMedCrossRefGoogle Scholar
  65. Donovan SE, Eggleton P, Dubbin WE, Batchelder M, Dibog L (2001) The effect of a soil-feeding termite, Cubitermes fungifaber (Isoptera: Termitidae) on soil properties: termites may be an important source of soil microhabitat heterogeneity in tropical forests. Pedobiologia 45:1–11CrossRefGoogle Scholar
  66. Douglas AE (1994) Symbiotic interactions. Oxford University Press, UKGoogle Scholar
  67. Dunbar HE, Wilson AC, Ferguson NR, Moran NA (2007) Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biol 5:e96PubMedCrossRefGoogle Scholar
  68. Eggleton P (2000) Global patterns of termite diversity. In: Abe T, Higashi M, Bignell D (eds) Termites: evolution, sociality, symbioses, Ecology. Kluwer, Dordrecht, pp 25–52Google Scholar
  69. Erasmus BFN, Van Jaarsveld AS, Chown SL, Kshatriya M, Wessels KJ (2002) Vulnerability of South African animal taxa to climate change. Glob Chang Biol 8:679–693CrossRefGoogle Scholar
  70. Farji-Brener AG, Ghermandi L (2004) Seedling recruitment in a semi-arid Patagonian steppe: facilitative effects of refuse dumps of leaf-cutting ants. J Veg Sci 15:823–830Google Scholar
  71. Fernández-Marín H, Zimmerman JK, Wcislo WT (2004) Ecological traits and evolutionary sequence of nest establishment in fungus-growing ants (Hymenoptera, Formicidae, Attini). Biol J Linn Soc 81:39–48CrossRefGoogle Scholar
  72. Ferrari J, Darby AC, Daniell TJ, Godfray CJ, Douglas AE (2004) Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol Entomol 29:60–65CrossRefGoogle Scholar
  73. Fowler HG (1977) Some factors influencing colony spacing and survival in the grass-cutting ant, Acromyrmex landolti fracticornis (Forel) (Hymenoptera: Formicidae), in Paraguay. Rev Biol Trop 25:89–99Google Scholar
  74. Fowler HG, Pagani MI, Da Silva OA, Forti LC, Da Silva VP, De Vasconcelos HL (1989) A pest is a pest is a pest? The dilemma of neotropical leaf-cutting ants: keystone taxa of natural ecosystems. Environ Manag 13:671–675CrossRefGoogle Scholar
  75. Fraedrich SW, Harrington TC, Rabaglia RJ, Ulyshen MD, Mayfield AE, Hanula JL, Eickwort JM, Miller DR (2008) A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other Lauraceae in the southeastern United States. Plant Dis 92:215–224CrossRefGoogle Scholar
  76. Fukatsu T, Nikoh N (1998) Two intracellular symbiotic bacteria from the mulberry psyllid Anomonerura mori (Insecta, Homoptera). Appl Environ Microbiol 64:3599–3606PubMedGoogle Scholar
  77. Fukatsu T, Nikoh N, Kawai R, Koga R (2000) The secondary endosymbiotic bacterium of the pea aphid Acyrthosiphon pisum (Insecta: Homoptera). Appl Environ Microbiol 66:2748–2758PubMedCrossRefGoogle Scholar
  78. Fukuda H, Hijii N (1997) Reproductive strategy of a woodwasp with no fungal symbionts, Xeris spectrum (Hymenoptera: Siricidae). Oecologia 112:551–556CrossRefGoogle Scholar
  79. Fuller JL, Foster DR, McLachlan JS, Drake N (1998) Impact of human activity on regional forest composition and dynamics in central New England. Ecosystems 1:76–95CrossRefGoogle Scholar
  80. Gaston K (1991) The magnitude of global insect species richness. V5: 283–296Google Scholar
  81. Gerardo NM, Caldera EJ (2007) Labile associations between fungus-growing Apterostigma ant cultivars and their garden parasites. Int Soc Microb Ecol J 1:373–384Google Scholar
  82. Gherna RL, Werren JH, Weisburg W, Cote R, Woese CR, Mandelco L, Brenner DJ (1991) Arsenophonus nasoniae gen. nov., sp. nov., the causative agent of the son-killer trait in the parasitic wasp Nasonia vitripennis. Int J Syst Bacteriol 41:563–565CrossRefGoogle Scholar
  83. Goldhammer DS, Stephen FM, Paine TD (1990) The effect of the fungi Ceratocystis minor (Hedgecock) Hunt var. barrasii Taylor, and SJB 122 on the reproduction of the southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae). Can Entomol 122:407–418CrossRefGoogle Scholar
  84. Haack RA (2001) Intercepted Scolytidae (Coleoptera) at United States ports of entry: 1985–2000. Integr Pest Manag Rev 6:253–282CrossRefGoogle Scholar
  85. Halfhill JE, Featherson PE, Dicke AG (1972) History of Praon and Aphidius parasites of the pea aphid in the Pacific Northwest. Environ Entomol 1:402–405Google Scholar
  86. Hansen AK, Jeong G, Paine TD, Stouthamer R (2007) Frequency of secondary symbiont infection in an invasive psyllid relates to parasitism pressure on a geographic scale in California. Appl Environ Microbiol 73:7531–7535PubMedCrossRefGoogle Scholar
  87. Hansen AK, Trumble JT, Stouthamer R, Paine TD (2008) New Huanglongbing (HLB) Candidatus species, “C. Liberibacter psyllaurous”, found to infect tomato and potato is vectored by the psyllid Bactericera cockerelli (Sulc). Appl Environ Microbiol 74:5862–5865PubMedCrossRefGoogle Scholar
  88. Harmon JP, Moran NA, Ives AR (2009) Species response to environmental change: impacts of food web interactions and evolution. Science 323:1347–1350PubMedCrossRefGoogle Scholar
  89. Harper AM, Miska JP, Manglitz GR, Irwin BJ, Armbrust EJ (1978) The literature of arthropods associated associated with alfalfa. III. A bibliography of Acrythosiphon pisum. Agricultural Experimental Station, University of Illinois, Urbana-Champaign, pp 1–89, Special Publication 50Google Scholar
  90. Haugen DA (1990) Control procedures for Sirex noctilio in the Green Triangle: review from detection to severe outbreak (1977–87). Austral Forest 53:24–32Google Scholar
  91. Haugen DA, Underdown MG (1993) Reduced parasitism of Sirex noctilio in radiata pines inoculated with the nematode Beddingia siricidicola during 1974–89. Austral Forest 56:45–48Google Scholar
  92. Henter HJ, Via S (1995) The potential for coevolution in a host-parasitoid system. I. Genetic variation within an aphid population in susceptibility to a parasitic wasp. Evolution 49:427–438CrossRefGoogle Scholar
  93. Hicke JA, Logan JA, Powell J, Ojima DS (2006) Changing temperatures influence suitability for modeled mountain pine beetle (Dendroctonus ponderosae) outbreaks in the western United States. J Geophys Res 3:G02019CrossRefGoogle Scholar
  94. Hill RE (1947) An unusual weather sequence accompanying the severe potato psyllid outbreak in 1938 in Nebraska. J Kansas Entomol Soc 20:88–92Google Scholar
  95. Hoebeke ER, Haugen DA, Haack RA (2005) Sirex noctilio: discovery of a Palearctic siricid woodwasp in New York. Newsl Mich Entomol Soc 50:24–25Google Scholar
  96. Hofstetter RW, Klepzig KD, Moser JC, Ayres MP (2006a) Seasonal dynamics of mites and fungi and their interactions with southern pine beetle. Environ Entomol 35:22–30CrossRefGoogle Scholar
  97. Hofstetter RW, Cronin J, Klepzig KD, Moser JC, Ayres MP (2006b) Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle. Oecologia 147:679–691PubMedCrossRefGoogle Scholar
  98. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, CambridgeGoogle Scholar
  99. Hosokawa T, Kikuchi Y, Shimada M, Fukatsu T (2007) Obligate symbiont involved in pest status of host insect. Proc R Soc Lond B 274:1979–1984CrossRefGoogle Scholar
  100. Hurley BP, Slippers B, Wingfield MJ (2007) A comparison of control results for the alien invasive woodwasp, Sirex noctilio, in the southern hemisphere. Agric For Entomol 9:159–171CrossRefGoogle Scholar
  101. Hurley BP, Slippers B, Croft PK, Hatting HH, van der Linde M, Morris AR, Dyer C, Wingfield MJ (2008) Factors influencing parasitism of Sirex noctilio (Hymenoptera:Siricidae) by the nematode Deladenus siricidicola (Nematoda: Neotylenchidae) in summer rainfall areas of South Africa. Biol Control 45:450–459CrossRefGoogle Scholar
  102. IPCC WGII (2007) Working group II contribution to the intergovernmental panel on climate change, fourth assessment report. Climate change 2007: climate change impacts, adaptation and vulnerability. Summary for policy makers. www.ipcc.ch/SPM6avr07.pdf
  103. Ito S, Yamada T (1998) Distribution and spread of mass mortality of oak trees. J Jpn Forest Soc 80:229–232, In Japanese, referenced from Kamata et al. 2002Google Scholar
  104. Jacobs K, Bergdahl DR, Wingfield MJ, Halik S, Seifert KA, Bright DE, Wingfield BD (2004) Leptographium wingfieldii introduced into North America and found associated with the exotic Tomicus piniperda and native bark beetles. Mycol Res 108:411–418PubMedCrossRefGoogle Scholar
  105. Janson EM, Stireman JO III, Singer MS, Abbot P (2009) Phytophagous insect-microbe mutualisms and adaptive evolutionary diversification. Evolution 62:997–1012CrossRefGoogle Scholar
  106. Jones JA (1990) Termites, soil fertility and carbon cycling in dry tropical Africa: a hypothesis. J Trop Ecol 6:291–305CrossRefGoogle Scholar
  107. Jonkman JCM (1978) Nest of the leaf-cutting ant, Atta wollenweideri, as accelerators of succession in pastures. Zeit Ange Ent 86:25–34CrossRefGoogle Scholar
  108. Kamata N, Esaki K, Kato K, Igeta Y, Wada K (2002) Potential impact of global warming on deciduous oak die-back caused by ambrosia fungus Raffaelea sp. carried by ambrosia beetle Platypus quercivorus (Coleoptera: Platypodidae). Bull Entomol Res 92:119–126PubMedGoogle Scholar
  109. Keane RE, Ryan KC, Veblen T, Allen CD, Logan JA, Hawkes B (2002) The cascading effects of fire exclusion in Rocky Mountain ecosystems. USDA FS General Technical Report RMRS-GTR-91. 24 pGoogle Scholar
  110. Kiers TE, Palmer TM, Ives AR, Bruno JF, Bronstein JL (2010) Mutualisms in a changing world: an evolutionary perspective. Ecol Lett. doi:10.1111/j.1461-0248.2010.01538.x PubMedGoogle Scholar
  111. Kirkendall LR (1993) Ecology and evolution of biased sex ratios in bark and ambrosia beetles. In: Wrensch DL, Ebbert MA (eds) Evolution and diversity of sex ratio in insects and mites. Chapman and Hall, New York, pp 235–345Google Scholar
  112. Kok LT, Norris DM, Chu HM (1970) Sterol metabolism as a basis for mutualistic symbiosis. Nature 225:661–662PubMedCrossRefGoogle Scholar
  113. Konate S, Le Roux X, Verdier B, LePage M (2003) Effect of underground fungus-growing termites on carbon dioxide emission at the point- and landscape scales in an African savanna. Funct Ecol 17:305–314CrossRefGoogle Scholar
  114. Kowero G, Kufukwandi F, Chipeta M (2006) Africa’s capacity to manage its forests: an overview. Int For Rev 8:110–117Google Scholar
  115. Kubono T, Ito S (2002) Raffaelea quercivora sp. nov. associated with mass mortality of Japanese oak, and the ambrosia beetle (Platypus quercivorus). Mycoscience 43:255–260CrossRefGoogle Scholar
  116. Kühnholn S, Borden JH, Uzonovic A (2003) Secondary ambrosia beetles in apparently healthy trees: adaptations, potential causes and suggested research. Integr Pest Manag Rev 6:209–219CrossRefGoogle Scholar
  117. Kukor JJ, Martin MM (1983) Acquisition of digestive enzymes by siricid woodwasps from their fungal symbiont. Science 220:1161–1163PubMedCrossRefGoogle Scholar
  118. Kurz WA, Dymond CC, Stinson G, Rampley GJ, Nelson ET, Carroll AL, Ebata T, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990PubMedCrossRefGoogle Scholar
  119. Leal IR, Oliveira PS (1998) Interactions between fungus-growing ants (Attini), fruits and seeds in Cerrado vegetation in Southeast Brazil. Biotropica 30:170–178CrossRefGoogle Scholar
  120. Ledig FT (1992) Human impacts on genetic diversity in forest ecosystems. Oikos 63:87–108CrossRefGoogle Scholar
  121. Lee S, Breuil C, Hamelin R, Six DL (2007) Genetic diversity and the presence of two distinct groups in Ophiostoma clavigerum associated with the mountain pine beetle, Dendroctonus ponderosae in British Columbia and the northern Rocky Mountains. Phytopathol 97:1177–1185CrossRefGoogle Scholar
  122. Lee JC, Aguayo I, Aslin R, Durham G, Hamud SH, Ragenovich BD, Witcosky JJ, Seybold SJ (2009) Co-occurrence of the invasive banded and European elm bark beetles in North America. Ann Entomol Soc Am 102:426–436CrossRefGoogle Scholar
  123. LePage M, Abbadie L, Mariotti A (1993) Food habits of sympatric termite species (Isoptera, Macrotermitinae) as determined by stable carbon isotope analysis in a Guinnean savanna (Lamto, Cote d’ Ivoire). J Trop Ecol 9:303–311CrossRefGoogle Scholar
  124. Lindenmayer DB, Noss R (2006) Salvage logging, ecosystem processes, and biodiversity conservation. Conserv Biol 20:949–958CrossRefGoogle Scholar
  125. Little AEF, Currie CR (2007) Symbiotic complexity: discovery of a fifth symbiont in the attine ant-microbe symbiosis. Biol Lett 3:501–504PubMedCrossRefGoogle Scholar
  126. Little AEF, Currie CR (2008) Black yeast symbionts compromise the efficiency of antibiotic defense in fungus-growing ants. Ecology 89:1216–1222PubMedCrossRefGoogle Scholar
  127. Logan JA, MacFarlane WW (2010) Beetle devastates Yellowstone whitebark pine forests. Action bioscience http://www.actionbioscience.org/environment/loganmacfarlane.html?print
  128. Logan JA, Bentz BJ, Powell JA (2002) Ghost forests, global warming and the mountain pine beetle. Am Entomol 47:160–173Google Scholar
  129. Logan JA, Regniere J, Powell JA (2003) Addressing impacts of global warming on forest pest dynamics. Front Ecol Environ 1:130–137CrossRefGoogle Scholar
  130. Lombardero MJ, Ayres MP, Hofstetter RW, Moser JC, Klepzig KD (2003) Strong indirect interactions of Tarsonemus mites (Acarina: Tarsonemidae) and Dendroctonus frontalis (Coleoptera: Scolytidae). Oikos 102:243–252CrossRefGoogle Scholar
  131. Lu Q, deCock C, Zhang XY, Maraite H (2008) Leptographium sinoprocerum sp. Nov., and undescribed species associated with Pinus tabuliformis-Dendroctonus valens in northern China. Mycologia 100:275–290PubMedCrossRefGoogle Scholar
  132. Lu Q, deCock C, Zhang XY, Maraite H (2009a) Ophiostomatoid fungi (Ascomycota) associated with Pinus tabuliformis infested by Dendroctonus valens (Coleoptera) in northern China and an assessment of their pathogenicity on mature trees. Antonie Leeuwenhoek 96:275–293PubMedCrossRefGoogle Scholar
  133. Lu M, Zhou XD, DeBeer ZW, Wingfield MJ, Sun J-H (2009b) Ophiostomatoid fungi associated with the invasive pine-infesting bark beetle, Dendroctonus valens, in China. Fungal Divers 38:133–145Google Scholar
  134. Mackauer M, Campbell A (1972) The establishment of three exotic parasites (Hymenoptera: Aphidiidae) in British Columbia. J Entomol Soc BC 69:54–58Google Scholar
  135. Madden JL (1988) Sirex in Australasia. In: Berryman AA (ed) Dynamics of forest insect populations patterns, causes, implications. Plenum, New York, pp 407–429Google Scholar
  136. Madden JL, Coutts MP (1979) The role of fungi in the biology and ecology of woodwasps (Hymenoptera: Siricidae). In: Batra LR (ed) Insect-fungus symbiosis. Allanheld, Osmun & Co., Montclair, pp 165–174Google Scholar
  137. Margulis L, Fester R (1991) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. The MIT, CambridgeGoogle Scholar
  138. Massoumi-Alamouti S, Tsui CKM, Breuil C (2009) Multi-gene phylogeny of filamentous ambrosia fungi associated with ambrosia and bark beetles. Mycol Res 113:822–835PubMedCrossRefGoogle Scholar
  139. Mayhé-Nunes AJ, Jaffe K (1998) On the biogeography of Attini (Hymenoptera: Formicidae). Ecotropicos 11:45–54Google Scholar
  140. Maynard Smith J, Szathmary E (1995) The major transitions in evolution. WH Freeman, New YorkGoogle Scholar
  141. McCullough DG, Werner RA, Neumann D (1998) Fire and insects on northern and boreal forest ecosystems of North America. Annu Rev Entomol 43:107–122PubMedCrossRefGoogle Scholar
  142. Mikheyev AS, Mueller UG, Boomsma JJ (2007) Population genetic signatures of diffuse co-evolution between leaf-cutting ants and their cultivar fungi. Mol Ecol 16:209–216PubMedCrossRefGoogle Scholar
  143. Mira A, Moran N (2002) Estimating population size and transmission bottlenecks in maternally transmitted endosymbiotic bacteria. Microb Ecol 44:137–143PubMedCrossRefGoogle Scholar
  144. Mireku E, Simpson JA (2002) Fungal and nematode threats to Australian forests and amenity trees from importation of wood and wood products. Can J Plant Pathol 24:117–124CrossRefGoogle Scholar
  145. Moir ML, Brennan KEC (2007) Using bugs (Hemiptera) as ecological and environmental indicators in forest ecosystems. In: Verne NC (ed) Forest ecology research horizons. Nova, New York, pp 203–238Google Scholar
  146. Möller AFW (1893) Die Pilzgärten einiger südamerikanischer Ameisen. Gustav Fischer Verlag, Jena, GermanyGoogle Scholar
  147. Montllor CB, Maxmen A, Purcell AH (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecological Ent 27:189–195CrossRefGoogle Scholar
  148. Morales-Ramos JA, Rojas G, Sittertz-Bhatkar H, Saldana G (2000) Symbiotic relationship between Hypothenemus hampei (Coleoptera: Scolytidae) and Fusarium solani (Moniliales: Tuberculariaceae). Ann Entomol Soc Am 93:541–547CrossRefGoogle Scholar
  149. Moran NA, Degnan PH, Santos SR, Dunbar HE, Ochman H (2005) The players in a mutualistic symbiosis: insects, bacteria, viruses and virulence genes. PNAS 102:16919–16926PubMedCrossRefGoogle Scholar
  150. Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190PubMedCrossRefGoogle Scholar
  151. Morgan FD (1968) Bionomics of siricidae. Annu Rev Entomol 13:239–256CrossRefGoogle Scholar
  152. Morgan FD (1984) Psylloidea of South Australia. SAGPO, AdelaideGoogle Scholar
  153. Mueller UG, Rehner SA, Schultz TR (1998) The evolution of agriculture in ants. Science 281:2034–2038PubMedCrossRefGoogle Scholar
  154. Mueller UG, Schultz TR, Currie CR, Adams RMM, Malloch D (2001) The origin of the attine ant-fungus mutualism. Quart Rev Biol 76:169–197PubMedCrossRefGoogle Scholar
  155. Neumann FG, Minko G (1981) The sirex woodwasp in Australian radiata pine plantations. Austral Forest 44:46–63Google Scholar
  156. Nielsen C, Williams DW, Hajek AE (2009) Putative source of the invasive Sirex noctilio fungal symbiont, Amylostereum areolatum, in the eastern United States and its association with native siricid woodwasps. Mycol Res 113:1242–1253PubMedCrossRefGoogle Scholar
  157. Normark BB, Jordahl BH, Farrell BD (1999) Origin of a haplodiploid beetle lineage. Proc R Soc Lond B 266:2253–2259CrossRefGoogle Scholar
  158. Norris DM (1979) The mutualistic fungi of Xyleborini beetles. In: Batra LR (ed) Insect-fungus symbiosis: nutrition, mutualism, and commensalism. Allanheld, Osmun, and Co, New Jersey, pp 53–64Google Scholar
  159. Nováková E, Hypša V, Moran N (2009) Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol 9:143PubMedCrossRefGoogle Scholar
  160. Oh DC, Poulsen M, Currie CR, Clardy J (2009) Dentigerumycin, the bacterially produced molecular mediator of a fungus-growing ant symbiosis. Nat Chem Biol 5:391–393PubMedCrossRefGoogle Scholar
  161. Ohkuma M (2003) Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl Microbiol Biotech 61:1–9Google Scholar
  162. Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. PNAS 100:1803–1807PubMedCrossRefGoogle Scholar
  163. Oliver KM, Moran NA, Hunter MS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. PNAS 102:12795–12800PubMedCrossRefGoogle Scholar
  164. Oliver KM, Moran NA, Hunter M (2006) Costs and benefits of a superinfection of facultative symbionts in aphids. Proc R Soc Lond B 273(1591):1273–1280CrossRefGoogle Scholar
  165. Oliver KM, Degnan PH, Hunter MS, Moran NA (2009) Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 325:992–994PubMedCrossRefGoogle Scholar
  166. Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts of aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 55:247–266PubMedCrossRefGoogle Scholar
  167. Paine TD, Millar JG (2002) Insect pests of eucalyptus in California: implications of managing invasive species. Bull Entomol Res 92:147–151PubMedCrossRefGoogle Scholar
  168. Paine TD, Dahlsten DL, Millar JG, Hoddle MS, Hanks LM (2000) UC scientists apply IPM techniques to new eucalyptus pests. Calif Agric 54:8–13CrossRefGoogle Scholar
  169. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42PubMedCrossRefGoogle Scholar
  170. Paulin-Mahady AE, Harrington TC, McNew D (2002) Phylogenetic and taxonomic evaluation of Chalara, Chalaropsis, and Thielaviopsis anamorphs associated with Ceratocystis. Mycologia 94:62–72PubMedCrossRefGoogle Scholar
  171. Perkins TE, Matlack GR (2002) Human-generated pattern in commercial forests of southern Mississippi and consequences for spread of pests and pathogens. For Ecol Manag 157:143–154CrossRefGoogle Scholar
  172. Perotti MA, Allen JM, Reed DL, Braig HR (2007) Host-symbiont interactions of the primary endosymbiont of human head and body lice. J Fed Amer Soc Exp Biol 21:1058–1066Google Scholar
  173. Pinto-Tomás AA, Anderson MA, Suen G, Stevenson DM, Chu FST, Wallace Cleland W, Weimer PJ, Currie CR (2009) Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326:1120–1123PubMedCrossRefGoogle Scholar
  174. Poulsen M, Cafaro MJ, Boomsma JJ, Currie CR (2005) Specificity of the mutualistic association between actinomycete bacteria and two sympatric species of Acromyrmex Leaf-cutting ants. Mol Ecol 14:3597–3604PubMedCrossRefGoogle Scholar
  175. Poulsen M, Fernández-Marin H, Currie CR, Boomsma JJ (2009) Ephemeral windows of opportunity maintain horizontal transmission of fungal symbionts in leaf-cutting ants. Evolution 63:2235–2247PubMedCrossRefGoogle Scholar
  176. Poulsen M, Cafaro MJ, Erhardt D, Gerardo NM, Little A, Tebbets B, Klein B, Currie CR (2010) Variation in Pseudonocardia antibiotic defense helps govern parasite-induced morbidity in Acromyrmex leaf-cutting ants. Environ Microbiol Rep 2:534–540CrossRefGoogle Scholar
  177. Pringle RM, Doak DF, Brody AK, Jocque R, Palmer TM (2010) Spatial Pattern enhances ecosystem functioning in an African savanna. Plos Biology 8Google Scholar
  178. Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Turner MG, Romme WH (2008) Cross-scale drivers of natural disturbance prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58:501–517CrossRefGoogle Scholar
  179. Régneirè J, Bentz BJ (2007) Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae. J Insect Physiol 53:559–572CrossRefGoogle Scholar
  180. Reynolds HT, Currie CR (2004) Pathogenicity of Escovopsis weberi: the parasite of the attine ant-microbe symbiosis directly consumes the ant-cultivated fungus. Mycologia 96:955–959PubMedCrossRefGoogle Scholar
  181. Rice AV, Thormann MN, Langor DW (2008) Mountain pine beetle-associated blue-stain fungi are differentially adapted to boreal temperatures. For Path 38:113–123CrossRefGoogle Scholar
  182. Rouland-Lefevre C, Mora P (2002) Control of Ancistrotermes guineensis Silvestri (Termitidae: Macrotermitinae), a pest of sugarcane in Chad. Int J Pest Manag 48:81–86CrossRefGoogle Scholar
  183. Roux J, Kamgan NG, Ott E, Six DL (2010) First report of Xylosandrus crassiasculus and its ambrosia symbiont in South Africa. S Afr J Bot (In Prep)Google Scholar
  184. Russell JA, Moran NA (2006) Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc R Soc B 273(1586):603–610PubMedCrossRefGoogle Scholar
  185. Sandström JA, Russell J, White JP, Moran NA (2001) Independent origins and horizontal transfer of bacterial symbionts of aphids. Mol Ecol 10:217–228PubMedCrossRefGoogle Scholar
  186. Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32CrossRefGoogle Scholar
  187. Scarborough CL, Ferrari J, Godfray HJJ (2005) Aphid protected from pathogen by endosymbiont. Science 310:1781PubMedCrossRefGoogle Scholar
  188. Schowalter TD, Zhang Y (2005) Canopy arthropod assemblages in four overstory and three understory plant species in a mixed-conifer old-growth forest in California. For Sci 51:233–242Google Scholar
  189. Schultz TR, Brady S (2008) Major evolutionary transitions in ant agriculture. PNAS 105:5435–5440PubMedCrossRefGoogle Scholar
  190. Schuurman G (2005) Decomposition rates and termite assemblage composition in semiarid Africa. Ecology 86:1236–1249CrossRefGoogle Scholar
  191. Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407:81–86PubMedCrossRefGoogle Scholar
  192. Sileshi GW, Nyeko P, Nkunika POY, Sekematte BM, Akinnifesi FK, Ajayi OC (2009) Integrating ethno-ecological and scientific knowledge of termites for sustainable termite management and human welfare in Africa. Ecology and Society 14: 48. [online] URL: http://www.ecologyandsociety.org/vol14/iss1/art48/
  193. Six DL (2003) Bark beetle-fungus symbioses. In: Bourtzis K, Miller TA (eds) Insect symbiosis. CRC, New York, pp 97–114CrossRefGoogle Scholar
  194. Six DL (2009) Climate change and mutualism. Nat Rev Microbiol 7:686PubMedCrossRefGoogle Scholar
  195. Six DL, Bentz BJ (2007) Temperature determines the relative abundance of symbionts in a multipartite bark beetle-fungus symbiosis. Microb Ecol 54:112–118PubMedCrossRefGoogle Scholar
  196. Six DL, Klepzig KD (2004) Dendroctonus bark beetles as model systems for the study of symbiosis. Symbiosis 37:207–232Google Scholar
  197. Six DL, Paine TD (1998) Effects of mycangial fungi and host tree species on progeny survival and emergence of Dendroctonus ponderosae (Coleoptera: Scolytidae). Environ Entomol 27:1393–1401Google Scholar
  198. Six DL, Wingfield MJ (2011) The role of phytopathogenicity in bark beetle-fungus symbioses: a challenge to the classic paradigm. Annu Rev Entomol 56:255–272PubMedCrossRefGoogle Scholar
  199. Six DL, Stone WD, de Beer ZW, Woolfolk SW (2009) Ambrosiella beaveri, sp. Nov., associated with an exotic ambrosia beetle, Xylosandrus mutilatus, in Mississippii, USA. Antonie Leeuwenhoek 96:17–29PubMedCrossRefGoogle Scholar
  200. Slippers B, Wingfield BD, Coutinho TA, Wingfield MJ (2002) DNA sequence and RFLP data reflect geographical spread and relationships of Amylostereum areolatum and its insect vectors. Mol Ecol 11:1845–1854PubMedCrossRefGoogle Scholar
  201. Slippers B, Coutinho TA, Wingfield BD, Wingfield MJ (2003) The genus Amylostereum and its association with woodwasps: a contemporary review. S Afr J Sci 99:70–74Google Scholar
  202. Spradbery JP, Kirk AA (1978) Aspects of the ecology of siricid woodwasps (Hymenoptera: Siricidae) in Europe, North Africa and Turkey with special reference to the biological control of Sirex noctilio F. in Australia. Bull Entomol Res 68:341–359CrossRefGoogle Scholar
  203. Stone WE, Wolfe ML (1996) Response of understory vegetation to variable tree mortality following mountain pine beetle epidemic in lodgepole pine stands in northern Utah. Vegetatio 122:1–12CrossRefGoogle Scholar
  204. Stone WD, Nebeker TE, Gerard PD (2007) Host plants of Xylosandrus mutilatus in Mississippi. Fla Entomol 90:191–195CrossRefGoogle Scholar
  205. Subandiyah S, Nikoh N, Tsuyumu S, Somowiyarjo S, Fukatsu T (2000) Complex endosymbiotic microbiota of the citrus psyllid Diaphorina citri (Homoptera: Psylloidea). Zool Sci 17:983–989CrossRefGoogle Scholar
  206. Taerum SJ, Cafaro MJ, Little AEF, Schultz TR, Currie CR (2007) Low host-pathogen specificity in the leaf-cutting ant-microbe symbiosis. Proc R Soc Lond B 274:1971–1978CrossRefGoogle Scholar
  207. Talbot PHB (1977) The Sirex-Amylostereum-Pinus association. Annu Rev Phytopathol 15:41–54CrossRefGoogle Scholar
  208. Taylor SW, Carroll AL (2004) Disturbance, forest age, and mountain pine beetle dynamics in British Columbia: a historical perspective. Proceedings mountain pine beetle symposium: challenges and solutions. October 30–31. Kelowna, British Columbia, Canada. Pacific Forestry Centre Information Report BC-X-399. P. 41–51Google Scholar
  209. Thomas CD, Franco A, Hill JK (2006) Range retractions and extinctions in the face of climate warming. TREE 21:415–416PubMedGoogle Scholar
  210. Trowbridge RE, Dittmar K, Whiting MF (2006) Identification and phylogenetic analysis of Arsenophonus- and Photorhabdus-type bacteria from adult Hippoboscidae and Streblidae (Hippoboscoidea). J Invert Pathol 91:64–68CrossRefGoogle Scholar
  211. Tsuchida T, Koga R, Fukatsu T (2004) Host plant specialization governed by facultative symbiont. Science 303:1989PubMedCrossRefGoogle Scholar
  212. Turner JS (2001) On the mound of Macrotermes michaelseni as an organ of respiratory gas exchange. Physiol Biochem Zool 74:798–822PubMedCrossRefGoogle Scholar
  213. USDA (1994) Importation of logs, lumber, and other unmanufactured wood articles, environmental impact statement. USDA, Animal and Plant Inspection Service, Hyattsville, 48Google Scholar
  214. Vasconcelos HL, Araújo BB, Mayhe-Nunes AJ (2008) Patterns of diversity and abundance of fungus-growing ants (Formicidae: Attini) in areas of the Brazilian Cerrado. Rev Bras Zoologia 25:445–450CrossRefGoogle Scholar
  215. von Ihering H (1898) Die Anlagen neue Colonien und Pilzgärten bei Atta sexdens. Zool Anz 21:238–245Google Scholar
  216. Vorburger C, Gehrer L, Rodriguez P (2010) A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biol Lett 6:109–111PubMedCrossRefGoogle Scholar
  217. Wade TG, Ritters KH, Wickham JD, Jones KB (2003) Distribution and causes of global forest fragmentation. Conserv Ecol 7:7Google Scholar
  218. Weber NA (1966) Fungus-growing ants. Science 153:587–604PubMedCrossRefGoogle Scholar
  219. Weber NA (1972) Gardening ants: the attines. Mem Amer Phil Soc 92:1–142Google Scholar
  220. White TCR (1971) Lerp insects (Homoptera: Psyllidae) on red gum (E. camaldulensis) in South Australia. S Aust Nat 46:20–23Google Scholar
  221. Williamson M (1996) Biological invasions. Chapman and Hall, LondonGoogle Scholar
  222. Wingfield MJ, Slippers B, Wingfield BD (2010) Novel associations between pathogens, insects and tree species threaten world forests. N Z J For Sci 40(suppl):S95–S103Google Scholar
  223. Wirth R, Herz H, Ryel RJ, Beyschlag W, Hölldobler B (2003) Herbivory of leaf-cutting ants. A case study on Atta colombica in the tropical rain forest of Panama, Ecological studies. Springer, Berlin, p xvi, 230Google Scholar
  224. Wood SL (1982) The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Nat Mem 6:1–1359Google Scholar
  225. Wood TG (1996) The agricultural importance of termites in the tropics. Agric Zool Rev 7:117–155Google Scholar
  226. Wood T, Sands W (1978) The role of termites in ecosystems. In: Brian M (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, pp 245–292Google Scholar
  227. Wood TG, Johnson RA, Ohiagu CE (1980) Termite damage and crop loss studies in Nigeria—a review of termite (Isoptera) damage to maize and estimation of damage loss in yield and termite (Microtermes) abundance at Mokuna. Intl J Pest Mgmt 26:241–253CrossRefGoogle Scholar
  228. Wylie FR, Peters BC (1993) Insect pests of eucalypt plantations in Australia. 1. Queensland. Austral For 56:358–362Google Scholar
  229. Yan ZL, Owen D, Zhang ZN (2005) The red turpentine beetle, Dendroctonus valens LeConte (Scolytidae): An exotic invasive pest in China. Biodivers Conserv 14:1735–1760CrossRefGoogle Scholar
  230. Yukawa J (1984) An outbreak of Crypticerya jacobsoni (Green) (Homoptera: Margarodidae) on Rakata Besar of the Krakatau Islands in Indonesia. Appl Entomol Zool 19:179–180Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Diana L. Six
    • 1
  • Michael Poulsen
    • 2
    • 3
  • Allison K. Hansen
    • 4
  • Michael J. Wingfield
    • 5
  • Jolanda Roux
    • 6
  • Paul Eggleton
    • 7
  • Bernard Slippers
    • 8
  • Timothy D. Paine
    • 9
  1. 1.Department of Ecosystem and Conservation Sciences, College of Forestry and ConservationThe University of MontanaMissoulaUSA
  2. 2.Department of BacteriologyUniversity of WisconsinMadisonUSA
  3. 3.Section for Ecology and EvolutionUniversity of CopenhagenCopenhagenDenmark
  4. 4.Department of Ecology and Evolutionary Biology, West CampusYale UniversityWest HavenUSA
  5. 5.Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaRepublic of South Africa
  6. 6.Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaRepublic of South Africa
  7. 7.Natural History MuseumLondonUnited Kingdom
  8. 8.Department of Genetics, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaRepublic of South Africa
  9. 9.Department of EntomologyUniversity of CaliforniaRiversideUSA

Personalised recommendations