, Volume 50, Issue 1–2, pp 97–105 | Cite as

Variation of 15N natural abundance in leaves and nodules of actinorhizal shrubs in Northwest Patagonia

  • Eugenia E. Chaia
  • David D. Myrold


This study was performed to assess the N2-fixing capability of the native actinorhizal species Ochetophila trinervis (sin. Discaria trinervis) and Discaria chacaye (Rhamnaceae) in Northwest Patagonia. We measured the N concentration and 15N natural abundance in leaves and nodules of O. trinervis and D. chacaye, in leaves of associated non-actinorhizal vegetation, and in the soils under each sampled plant. O. trinervis and D. chacaye had foliar N concentrations that were about twice that of non-actinorhizal shrubs growing at the same sites, even though soils varied four-fold in total N across the sites. Leaves of both actinorhizal plants had a similar δ15N at any site and were close to atmospheric values. The foliar δ15N of non-actinorhizal plants and soil δ15N were strongly correlated across the sites. Nodules were depleted in δ15N relative to the foliage of the respective actinorhizal species. In conjunction with the uniformly high foliage N concentration of these actinorhizal plants and the universal presence of vesicles observed in root nodules, these data strongly suggest that O. trinervis and D. chacaye obtain a significant amount of their N from N2 fixation. To calculate the proportion of N derived from atmosphere, theoretical B-values were estimated. In all cases where the δ15N of fixing and reference foliage were significantly different, O. trinervis and D. chacaye obtained almost all of their N from N2 fixation. These results are the first to demonstrate N2 fixation by O. trinervis and D. chacaye in the field and therefore suggest an important role for these actinorhizal plants in the N economy of ecosystems in northwest Patagonia as well as their potential use for restoration of degraded lands in this region.


Actinorhizas Berberis microphylla Discaria spp. Ochetophila Patagonia Rosa rubiginosa Nitrogen fixation 15N natural abundance 





proportion of N derived from atmosphere



We thank Rockie Yarwood and Maria C. Sosa for technical help. This work was funded by Universidad Nacional del Comahue (Argentina) and supported by the Oregon Agricultural Experiment Station.


  1. Aagesen L (1999) Phylogeny of the tribe Colletieae, Rhamnaceae. Botanical Journal of the Linnean Society 131:1–43CrossRefGoogle Scholar
  2. Balboa O (1989) Actividad nodular in situ de los nódulos actinorrícicos de Talguenea quinquenervia (Rhamnaceae) en el matorral chileno. Boletin de la Sociedad Argentina de Botánica: 26:53–57Google Scholar
  3. Barros V, Cordon VH, Moyano CL, Mendez RJ, Forquera JC, Pizzio O (1983) Cartas de precipitación de la zona oeste de las provincias de Río Negro y Neuquén. Universidad Nacional del Comahue, ArgentinaGoogle Scholar
  4. Binkley D, Sollins P, McGill WB (1985) Natural abundance of nitrogen-15 as a tool for tracing alder fixed nitrogen. Soil Science Society of America Journal 49:444–447Google Scholar
  5. Boddey. R.M., Peoples, M.B., Palmer, B., and Dart, P.J (2000) Use of the 15N natural abundance technique to quantify biological nitrogen fixation in woody perennials. Nutrient Cycling in Agroecosystems 57:235–270CrossRefGoogle Scholar
  6. Busse MD (2000a) Suitability and use of the 15N-isotope dilution method to estimate nitrogen fixation by actinorhizal shrubs. Forest Ecology and Management 136:85–95CrossRefGoogle Scholar
  7. Busse, M.D. 2000b. Ecological significance of nitrogen fixation by actinorhizal shrubs in interior forests of California and Oregon. USDA Forest Service Gen. Tech. Rep. PSW-GTR-178.Google Scholar
  8. Busse MD, Jurgensen MF, Page-Dumroese DS, Powers RF (2007) Contribution of actinorhizal shrubs to site fertility in a Northern California pine forest. Forest Ecology and Management 244:68–75CrossRefGoogle Scholar
  9. Chaia E (1993) Caracterización morfo-anatómica y desarrollo estacional de nódulos actinorrícicos en Colletia hystrix y Discaria chacaye. Revista de la Facultad de Agronomía, La Plata 69:43–50Google Scholar
  10. Chaia, E.E. 1997. La simbiosis actinorrícica en las Rhamanceas del Parque y Reserva Nacional Nahuel Huapi. Doctoral Thesis, Universidad Nacional de La Plata. ArgentinaGoogle Scholar
  11. Chaia E (1998) Isolation of an effective strain of Frankia from nodules of Discaria trinervis (Rhamnaceae). Plant and Soil 205:99–102CrossRefGoogle Scholar
  12. Chaia E, Vobis G (2000) Seasonal change of the actinorhizal nodules and the movement of N in Discaria trinervis. In: Pedrosa FO, Hungria M, Geoffrey Yates M, Newton WE (eds) Nitrogen fixation: from molecules to crop productivity. Kluwer Academic Publishers, Dordrecht, p 469Google Scholar
  13. Chaia EE, Valverde C, Wall LG (2006) Local adaptation of Frankia isolates to different Discaria (Rhamnaceae) host species growing in Patagonia. Current Microbiology 53:523–528CrossRefPubMedGoogle Scholar
  14. Damascos, M.A. 2008. La rosa mosqueta y otras rosas. Imprenta Bavaria. Río Negro. ISBN 978-987-05-5427-1. 64 ppGoogle Scholar
  15. Domenach AM, Kurdali F, Daniere C, Bardin R (1988) Determination de l’identité isotopique de l’azote fixé par Frankia associé au genre Alnus. Canadian Journal of Botany 66:1241–1247CrossRefGoogle Scholar
  16. Domenach AM, Kurdali F (1989) Estimation of symbiotic dinitrogen fixation in alder forest by the method based on natural 15N abundance. Plant and Soil 118:51–59CrossRefGoogle Scholar
  17. Dzendoletas MA, Havrylenko M, Crivelli E (2003) Fenología de plantas en Puerto Blest, Parque Nacional Nahuel Huapi, Patagonia, Argentina. Ecología 17:87–98Google Scholar
  18. Fontenla S, Godoy R, Rosso P, Havrylenko M (1998) Root associations in Austrocedrus forests and seasonal dynamics of arbuscular mycorrhizas. Mycorrhiza 8:29–33CrossRefGoogle Scholar
  19. Fontenla S, Puntieri J, Ocampo JA (2001) Mycorrhizal associations in the Patagonian steppe, Argentina. Plant and Soil 233:13–29CrossRefGoogle Scholar
  20. Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytologist 137:179–203CrossRefGoogle Scholar
  21. Hurd TM, Raynal DJ, Schwintzer CR (2001) Symbiotic N2 fixation of Alnus incana ssp. rugosa in shrub wetlands of the Adironack, New York, USA. Oecologia 126:94–103CrossRefGoogle Scholar
  22. Kellermann J, Medan D, Aagesen L, Hilger HH (2005) Rehabilitation of the South American genus Ochetophila Poepp. ex Endl. (Rhamnaceae: Colletiae). New Zealand Journal of Botany 43:865–869Google Scholar
  23. Kurdali F, Domenach AM, Bouvarel L, Moiroud A (1993) Field comparison of δ15N values and growth of alder provenances and species. Soil Science and Plant Nutrition 39:635–643Google Scholar
  24. Markham JH, Chanway CP (1999) Does past contact reduce the degree of mutualism in the Alnus rubra-Frankia symbiosis? Canadian Journal of Botany 77:434–441CrossRefGoogle Scholar
  25. Marticorena, C., and Rodríguez, R. (eds). 2005. Flora de Chile. Vol 2(3). Ed. Universidad de Concepción, Concepción. 128 pp. ISBN 956-227-251-6Google Scholar
  26. Martín CE, Chehébar C (2001) The national parks of Argentinian Patagonia – management policies for conservation, public use, rural settlements, and indigenous communities. Journal of The Royal Society of New Zealand 31:845–864CrossRefGoogle Scholar
  27. Mazzarino MJ, Bertiller M, Schlichter T, Gobbi M (1998) Nutrient cycling in Patagonia ecosystems. Ecología Austral 8:167–181Google Scholar
  28. Michelsen A, Quarmby C, Sleep D, Jonasson S (1998) Vascular plant 15N natural abundance in heath and forest tundra ecosystems in closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia 115:406–418CrossRefGoogle Scholar
  29. Mueller-Dombois D, Ellemberg H (1974) Aims and Methods of Vegetation Ecology. J. Wiley and Sons, New York, 547 ppGoogle Scholar
  30. Muñoz EA, Garay A (1985) Caracterización climática de la provincia de Río Negro. INTA Estación Experimental, Región Agropecuaria de San Carlos de Bariloche, 58 ppGoogle Scholar
  31. Myrold DD, Huss-Danell K (2003) Alder and lupine enhance nitrogen cycling in a degraded forest soil in Northern Sweden. Plant and Soil 254:47–56CrossRefGoogle Scholar
  32. Nuñez MA, Raffaele E (2007) Afforestation causes changes in post-fire regeneration in native shrubland communities of northwetern Patagonia, Argentina. Journal of Vegetation Science 18:827–834CrossRefGoogle Scholar
  33. Shearer G, Kohl DH (1989) Estimates of N2 fixation in ecosystems: the need for and basis of the 15N natural abundance method. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable Isotopes in Ecological Research. Springer Verlag, Berlin, pp 342–374Google Scholar
  34. Silvester WB, Balboa O, Martinez JA (1985) Nodulation and nitrogen fixation in members of the Rhamnaceae (Colletia, Retanilla, Talguenea and Trevoa) growing in the Chilean matorral. Symbiosis 1:29–38Google Scholar
  35. Tjepkema JD, Schwintzer CR, Burris RH, Johnson GV, Silvester WB (2000) Natural abundance of 15N in actinorhizal plants and nodules. Plant and Soil 219:285–289CrossRefGoogle Scholar
  36. Tortosa RD (1983) El género Discaria (Rhamnaceae). Boletín de la Sociedad Argentina de Botánica 22:301–335Google Scholar
  37. Tortosa RD, Aagesen L, Tourn GM (1996) Morphological studies in the tribe Colletiae (Rhamnaceae): analysis of architecture and inflorescences. Botanical Journal of the Linnean Society 122:353–367Google Scholar
  38. Valverde C, Wall LG (2003) Ammonium assimilation in root nodules of actinorhizal Discaria trinervis. Regulation of enzyme activities and protein levels by the availability of macronutrients (N, P and C). Plant and Soil 254:139–153CrossRefGoogle Scholar
  39. Virginia RA, Jarrell WM, Rundel PW, Shearer G, Kohl DH (1989) The use of variation in the natural abundance of 15N to assess symbiotic nitrogen fixation by woody plants. In: Rundel PH, Ehleringer JR, Nagy KA (eds) Stable Isotopes in Ecological Research. Springer Verlag, Berlin, pp 375–394Google Scholar
  40. Wolters DJ, Akkermans ADL, Van Dijk C (1997) Ineffective Frankia strains in the wet stands of Alnus glutinosa L. Gaertn in The Netherlands Soil Biology and Biochemistry 29:1707–1712CrossRefGoogle Scholar
  41. Yoneyama T, Sasakawa H (1991) Enrichment of natural 15N abundance in Frankia-infected nodules. Soil Science and Plant Nutrition 37:741–743Google Scholar
  42. Yoneyama T, Fujihara S, Yagi K (1998) Natural abundance of 15N in amino acids and polyamines from leguminous nodules: unique 15N enrichment in homospermidine. Journal of Experimental Botany 49:521–526CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Universidad Nacional del ComahueCentro Regional Universitario BarilocheBarilocheArgentina
  2. 2.Department of Crop and Soil ScienceOregon State UniversityCorvallisUSA

Personalised recommendations