, 49:43 | Cite as

Sizing the fungal and algal genomes of the lichen Cladonia grayi through quantitative PCR



Using a method based on quantitative PCR, we determined that the nuclear genome sizes for the mycobiont and photobiont of the lichen Cladonia grayi are 28.6 Mb and 106.7 Mb, respectively. This is the first genome size determination for lichens, and suggests that between 20,000 and 25,000 genes function in C. grayi. The mycobiont genome size is near the middle of the range observed within the Pezizomycota, the subphylum containing all known ascomycete lichen fungi. The genome size of the photobiont (the green alga Asterochloris sp.) is near the lower end of its class, the Trebouxiophyceae. Genomes in this size range can be sequenced at relatively low cost with current pyrosequencing-based methods. The genome sizing method requires very small amounts of precisely quantified DNA and should be applicable to any lichen whose symbionts can be reliably isolated from one another. Since the symbionts used in this project were isolated from soredia, the lichen’s vegetative propagules, we also describe a method for the establishment of axenic symbiont cultures from large numbers of soredia.


Genome size qPCR Cladonia lichens lichenoids soredia culture symbiosis mycobiont photobiont Asterochloris 


  1. Ahmadjian, V. 1993. The Lichen Symbiosis. J. Wiley and Sons, Inc., New York, 250 pp.Google Scholar
  2. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389–3402.CrossRefPubMedGoogle Scholar
  3. Armaleo, D. 1991. Experimental microbiology of lichens: mycelia fragmentation, a novel growth chamber, and the origins of thallus differentiation. Symbiosis 11: 163–177.Google Scholar
  4. Armaleo, D. and Miao, V. 1999. Symbiosis and DNA methylation in the Cladonia lichen fungus. Symbiosis 26: 143–163.Google Scholar
  5. Culberson, C.F., Culberson, W.L., and Johnson, A. 1981. A standardized TLC analysis of β-orcinol depsidones. Bryologist 84: 16–29.CrossRefGoogle Scholar
  6. Culberson, C.F., Culberson, W.L., and Johnson, A. 1985. Orcinoltype depsides and depsidones in the lichens of the Cladonia chlorophaea group (Ascomycotina, Cladoniaceae). Bryologist 88: 380–387.CrossRefGoogle Scholar
  7. Eriksson, O.E. 2006. Outline of Ascomycota. Myconet 12: 1–82.Google Scholar
  8. Fukuhara, H. 1969. Relative proportions of mitochondrial and nuclear DNA in yeast under various conditions of growth. European Journal of Biochemistry 11: 135–139.CrossRefPubMedGoogle Scholar
  9. Gardes, M. and Bruns, T.D. 1993. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113–118.CrossRefPubMedGoogle Scholar
  10. Gregory, T.R., Nicol, J.A., Tamm, H., Kullman, B., Kullman, K., Leitch, I.J., Murray, B.G., Kapraun, D.F., Greilhuber, J., and Bennett, M.D. 2007. Eukaryotic genome size databases. Nucleic Acids Research 35: D332–D338.CrossRefPubMedGoogle Scholar
  11. Grimes, G.W., Mahler, H.R., and Perlman, P.S. 1974. Nuclear gene dosage effects on mitochondrial mass and DNA. Journal of Cell Biology 61: 565–574.CrossRefPubMedGoogle Scholar
  12. Hardie, D.C., Gregory, T.R., and Hebert, P.D.N. 2002. From pixels to picograms: a beginners' guide to genome quantification by Feulgen Image Analysis Densitometry. Journal of Histochemistry and Cytochemistry 50: 735–749.PubMedGoogle Scholar
  13. Hauck, M., Paul, A., Mulack, C., Fritz, E., and Runge, M. 2002. Effects of manganese on the viability of vegetative diaspores of the epiphytic lichen Hypogymnia physodes. Environmental and Experimental Botany 47: 127–142.CrossRefGoogle Scholar
  14. Hibbett, D.S., and 65 other authors. 2007. A higher-level phylogenetic classification of the fungi. Mycological Research 111: 509–547.CrossRefPubMedGoogle Scholar
  15. James, T.Y., and 69 other authors. 2006. Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443: 818–822.CrossRefPubMedGoogle Scholar
  16. Kapraun, D.F. 2007. Nuclear DNA content estimates in green algal lineages: Chlorophyta and Streptophyta. Annals of Botany 99: 677–701.CrossRefPubMedGoogle Scholar
  17. Kirk, P.M., Cannon, P.F., David, J.C., and Stalpers, J. 2001. Ainsworth & Bisby's Dictionary of the Fungi. 9th edition, CAB International, Wallingford.Google Scholar
  18. Koopmann, R., Stevens, H., Franzen-Reuter, I., Frahm, J-P., and Grote, M. 2007. In vitro inhibition of soredial growth in the epiphytic lichen Physcia tenella (Ascomycetes: Lecanorales) by a variety of bark phenols. The Lichenologist 39: 567–572.CrossRefGoogle Scholar
  19. Kullman, B., Tamm, H., and Kullman, K. 2005. Fungal Genome Size Database.
  20. Lopez Perez, M. and Turner, G. 1975. Mitochondrial DNA from Aspergillus nidulans. FEBS Letters 58: 159–163.CrossRefPubMedGoogle Scholar
  21. Luck, D.J.L. and Reich, E. 1964. DNA in mitochondria of Neurospora crassa. Proceedings of the National Academy of Science USA 52: 931–938.CrossRefGoogle Scholar
  22. Lutzoni, F., Pagel, M., and Reeb, V. 2001. Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411: 937–940.CrossRefPubMedGoogle Scholar
  23. Lyman, H., Jupp, A.S., and Larrinua, I. 1975. Action of nalidixic acid on chloroplast replication in Euglena gracilis. Plant Physiology 55: 390–392.CrossRefPubMedGoogle Scholar
  24. Merchant, S.S., and 124 other authors. 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318: 245–250.CrossRefPubMedGoogle Scholar
  25. Miadlikowska, J., and 29 other authors. 2006. New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia 98: 1090–1103.CrossRefGoogle Scholar
  26. Misumi, O., Yoshida, Y., Nishida, K., Fujiwara, T., Sakajiri, T., Hirooka, S., Nishimura, Y., and Kuroiwa, T. 2007. Genome analysis and its significance in four unicellular algae, Cyanidioshyzon merolae, Ostreococcus tauri, Chlamydomonas reinhardtii, and Thalassiosira pseudonana. Journal of Plant Research 121: 3–17.CrossRefPubMedGoogle Scholar
  27. Piercey-Normore, M.D. and DePriest, P. 2001. Algal switching among lichen symbioses. American Journal of Botany 88: 1490–1498.CrossRefGoogle Scholar
  28. Rambold, G., Friedl, T., and Beck, A. 1998. Photobionts in lichens: possible indicators of phylogenetic relationships? Bryologist 101: 392–397.Google Scholar
  29. Ronaghi, M. 2001. Pyrosequencing sheds light on DNA sequencing. Genome Research 11: 3–11.CrossRefPubMedGoogle Scholar
  30. Schuster, G.S., Ott, S., and Jahns, H.M. 1985. Artificial culture of lichens in the natural environment. The Lichenologist 17: 247–253.CrossRefGoogle Scholar
  31. Stocker-Wörgötter, E. and Türk, R. 1988. Artificial cultures of the cyanobacterial lichen Peltigera didactyla (Peltigeraceae) in the natural environment. Plant Systematics and Evolution 165: 39–48.CrossRefGoogle Scholar
  32. White, T.J., Bruns, T., Lee, S., and Taylor, J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications. Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J., eds. Academic Press, Inc., New York, pp. 315–322.Google Scholar
  33. Wilhelm, J., Pingoud, A., and Hahn, M. 2003. Real-time PCRbased method for the estimation of genome sizes. Nucleic Acids Research 31(10) e56.CrossRefPubMedGoogle Scholar
  34. Wong, M.L. and Medrano, J.F. 2005. Real-time PCR for mRNA quantitation. BioTechniques 39: 1–11.CrossRefGoogle Scholar
  35. Wurtz, E.A., Boynton, J.E., and Gillham, N.W. 1977. Perturbation of chloroplast DNA amounts and chloroplast gene transmission in Chlamydomonas reinhardtii by 5-fluorodeoxyuridine. Proceedings of the National Academy of Science USA 74: 4552–4556.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of BiologyDuke UniversityDurhamUSA

Personalised recommendations