, Volume 49, Issue 1, pp 1–17 | Cite as

Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications

  • Ralf OelmüllerEmail author
  • Irena Sherameti
  • Swati Tripathi
  • Ajit Varma
Review Article


Piriformospora indica is a wide-host root-colonizing endophytic fungus which allows the plants to grow under extreme physical and nutrient stress. The fungus can be cultivated on complex and minimal substrates. It belongs to the Sebacinales in Basidiomycota. P. indica has a vast geographical distribution and is reported from Asia, South America and Australia. The fungus is interesting for basic research as well as biotechnological applications because: (i) it functions as a plant promoter and biofertilizer in nutrient-deficient soils, (ii) as a bioprotector against biotic and abiotic stresses including root and leaf fungus pathogens and insect invaders, (iii) as a bioregulator for plant growth development, early flowering, enhanced seed production, and stimulation of active ingredients in medicinal plants (iv) as well as a bio-agent for the hardening of tissue-culture-raised plants. Positive interaction are established for many plants of economic importance in arboriculture, agro-forestry, flori-horticulture including Orchids, and those utilized for energy production and paper industry. P. indica also interacts with members of bryophyte, Aneura pinguis, pteridophyte, Pteris ensiormis, Gymnosperms (Pinus halepensis) and a large number of angiosperms (145 tested till date) including the model plant Arabidopsis thaliana and other members of the mustard family. Similar to arbuscular mycorrhizal fungi, P. indica stimulates nutrient uptake in the roots and solubilizes insoluble phosphatic and sulphur components in the soil. The interaction of P. indica with the model plants Arabidopsis thaliana and barley (Hordeum vulgare L.) is used to understand the molecular basis of this beneficial plant/microbe interaction. We describe the current knowledge about the molecular basis of the interaction of plants with P. indica. An attempt is made to compare it with pathogenic and mycorrhizal plant/microbe interactions and also propose possible biotechnological applications.


Piriformospora indica plant-microbe interaction signal transduction biotechnology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alguacil, M.M., Hernandez, J.A., Caravaca, F., Portillo, B., and Roldan, A. 2003. Antioxidant enzyme activities in shoot from three mycorrhizal shrub species afforested in a degraded semiarid soil. Physiologia Plantarum 118: 562–570.CrossRefGoogle Scholar
  2. Allen, T.R., Millar, T., Berch, S.M., and Berbee, M.L. 2003. Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytologist 160: 255–272.CrossRefGoogle Scholar
  3. Ané, J.M., Kiss, G.B., Riely, B.K., Penmetsa, R.V., Oldroyd, G.E., Ayax, C., Levy, J., Debelle, F., Baek, J.M., Kalo, P., Rosenberg, C., Roe, B.A., Long, S.R., Denarie, J., and Cook, D.R. 2004. Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303: 1364–1367.PubMedCrossRefGoogle Scholar
  4. Anonymous, 2005. Plant probiotics. Nature Biotechnology 23: 1241.CrossRefGoogle Scholar
  5. Anthony, R.G., Henriques, R., Helfer, A., Meszaros, T., Rios, G., Testerink, C., Munnik, T., Deak, M., Koncz, C., and Bögre, L. 2004. A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. Embo Journal 23: 572–581.PubMedCrossRefGoogle Scholar
  6. Anthony, R.G., Khan, S., Costa, J., Pais, M.S., and Bögre, L. 2006. The Arabidopsis protein kinase PTI1-2 is activated by convergent phosphatidic acid and oxidative stress signaling pathways downstream of PDK1 and OXI1. Journal of Biological Chemistry 281: 37536–37546.PubMedCrossRefGoogle Scholar
  7. Asada, K. 1997. The role of ascorbate peroxidase and monodehydroascorbate reductase in H2O2 scavenging in plants. In: Oxidative Stress and the Molecular Biology of Antioxidant Defenses. Scandalios, J.G., ed. Cold Spring Harbor Laboratory Press, New York, pp. 715–735.Google Scholar
  8. Avis, P.G., McLaughlin, D.J., Dentinger, B.C., and Reich, P.B. 2003. Long-term increase in nitrogen supply alters above- and below-ground ectomycorrhizal communities and increases the dominance of Russula spp. in a temperate oak savanna. New Phytologist 160: 239–253.CrossRefGoogle Scholar
  9. Baldi, A., Jain, A., Gupta, N., Srivastava, A.K., and Bisaria, V.S. 2008. Co-culture of arbuscular mycorrhiza-like fungi (Piriformospora indica and Sebacina vermifera) with plant cells of Linum album for enhanced production of podophyllotoxins: a first report. Biotechnology Letters 30: 1671–1677.PubMedCrossRefGoogle Scholar
  10. Baltruschat, H., Fodor, J., Harrach, B.D., Niemczyk, E., Barna, B., Gullner, G., Janeczko, A., Kogel, K.H., Schäfer, P., Schwarczinger, I., Zuccaro, A., and Skoczowski, A. 2008. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytologist 180: 501–510.PubMedCrossRefGoogle Scholar
  11. Barazani, O., Benderoth, M., Groten, K., Kuhlemeier, C., and Baldwin, I.T. 2005. Piriformospora indica and Sebacina vermifera increase growth performance at the expense of herbivore resistance in Nicotiana attenuata. Oecologia 146: 234–243. PubMedCrossRefGoogle Scholar
  12. Barazani, O., von Dahl, C.C., and Baldwin, I.T. 2007. Sebacina vermifera promotes the growth and fitness of Nicotiana attenuata by inhibiting ethylene signaling. Plant Physiology 144: 1223–1232.PubMedCrossRefGoogle Scholar
  13. Bartels, D. and Sunkar, R. 2005. Drought and salt tolerance in plants. Critical Reviews in Plant Sciences 24: 23–58.CrossRefGoogle Scholar
  14. Beckers, G.J. and Conrath, U. 2007. Priming for stress resistance: from the lab to the field. Current Opinion in Plant Biology 10: 425–431.PubMedCrossRefGoogle Scholar
  15. Bennett, R.N., Wenke, T., Freudenberg, B., Mellon, F.A., and Ludwig-Müller, J. 2005. The tu8 mutation of Arabidopsis thaliana encoding a heterochromatin protein 1 homolog causes defects in the induction of secondary metabolite biosynthesis. Plant Biology 4: 348–357.CrossRefGoogle Scholar
  16. Berch, S.M., Allen, T.R., and Berbee, M.L. 2002. Molecular detection, community structure and phylogeny of ericoid mycorrhizal fungi. Plant and Soil 244: 55–66.CrossRefGoogle Scholar
  17. Bertaux, J., Schmid, M., Hutzler, P., Hartmann, A., Garbaye, J., and Frey-Klett, P. 2005. Occurrence and distribution of endobacteria in the plant-associated mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Environmental Microbiology 7: 1786–1795.PubMedCrossRefGoogle Scholar
  18. Blechert, O., Kost, G., Hassel, A., Rexer, R.H., and Varma, A. 1999. First remarks on the symbiotic interactions between Piriformospora indica and terrestrial orchid. In: Mycorrhizae, 2nd edition. Varma, A. and Hook, B., eds. Springer-Verlag, Germany, pp. 683–688.Google Scholar
  19. Blilou I, Bueno P, Ocampo JA, García-Garrido JM (2000a) Induction of catalase and ascorbate peroxidase activities in tobacco roots inoculated with the arbuscular mycorrhizal fungus Glomus mosseae. Mycological Research 104:722–725CrossRefGoogle Scholar
  20. Blilou, I., Bueno, P., Ocampo, J.A., and García-Garrido, J.M. 2000. Induction of catalase and ascorbate peroxidase activities in tobacco roots inoculated with the arbuscular mycorrhizal fungus Glomus mosseae. Mycological Research 104: 722–725.CrossRefGoogle Scholar
  21. Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., Heidstra, R., Aida, M., Palme, K., and Scheres, B. 2005. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433: 39–44.PubMedCrossRefGoogle Scholar
  22. Blume, B., Nürnberger, T., Nass, N., and Scheel, D. 2000. Receptor-mediated rise in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12: 1425–1440.PubMedCrossRefGoogle Scholar
  23. Bougoure, J.J., Bougoure, D.S., Cairney, J.W., and Dearnaley, J.D. 2005. ITS-RFLP and sequence analysis of endophytes from Acianthus, Caladenia and Pterostylis (Orchidaceae) in southeastern Queensland. Mycological Research 109: 452–460.PubMedCrossRefGoogle Scholar
  24. Bougoure, D.S., and Cairney, J.W. 2005. Assemblages of ericoid mycorrhizal and other root-associated fungi from Epacris pulchella (Ericaceae) as determined by culturing and direct DNA extraction from roots. Environmental Microbiology 7: 819–827.PubMedCrossRefGoogle Scholar
  25. Bucher, M. 2007. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytologist 173: 11–26.PubMedCrossRefGoogle Scholar
  26. Castells, E. and Casacuberta, J.M. 2007. Signalling through kinase-defective domains: the prevalence of atypical receptorlike kinases in plants. Journal of Experimental Botany 58: 3503–3511.PubMedCrossRefGoogle Scholar
  27. Chaves, M.M. and Oliveira, M.M. 2004. Mechanisms underlying plant resistance to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany 55: 2365–2384.PubMedCrossRefGoogle Scholar
  28. Denby, K. and Gehring, C. 2005. Engineering drought and salinity tolerance in plants: lessons from genome-wide expression profiling in Arabidopsis. Trends in Biotechnology 23: 547–552.PubMedCrossRefGoogle Scholar
  29. Deshmukh, S., Hückelhoven, R., Schäfer, P., Imani, J., Sharma, M., Weiss, M., Waller, F., and Kogel, K.H. 2006. The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proceedings of the National of Academy of Sciences USA 103: 18450–18457.CrossRefGoogle Scholar
  30. Deshmukh, S. and Kogel, K.-H. 2007. Piriformospora indica protects barley from root rot caused by Fusarium graminearum. Journal Plant Diseases and Protection 14: 263–268.Google Scholar
  31. Devlin, W.S. and Gustine, D.L. 1992. Involvement of the oxidative burst in phytoalexin accumulation and the hypersensitive reaction. Plant Physiology 100: 1189–1195.PubMedCrossRefGoogle Scholar
  32. Dumas, B., Bottin, A., Gaulin, E., and Esquerré-Tugayé, M.T. 2008. Cellulose-binding domains: cellulose associated-defensive sensing partners? Trends in Plant Science 13: 160–164.PubMedCrossRefGoogle Scholar
  33. Endré, G., Kereszt, A., Kevei, Z., Mihacea, S., Kalo, P., and Kiss, G.B. 2002. A receptor kinase gene regulating symbiotic nodule development. Nature 417: 962–966.PubMedCrossRefGoogle Scholar
  34. Espinosa, A., Guo, M., Tam, V.C., Fu, Z.Q., and Alfano, J.R. 2003. The Pseudomonas syringae type III-secreted protein HopPtoD2 possesses protein tyrosine phosphatase activity and suppresses programmed cell death in plants. Molecular Microbiology 49: 377–387.PubMedCrossRefGoogle Scholar
  35. Fester, T. and Hause, G. 2005. Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 15: 373–379.PubMedCrossRefGoogle Scholar
  36. Flexas, J., Bota, J., Loreto, F., Cornic, G., and Sharkey, T.D. 2004. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C(3) plants. Plant Biology 6: 269–279.PubMedCrossRefGoogle Scholar
  37. Foreman, J., Demidchik, V., Bothwell, J.H., Mylona, P., Miedema, H., Torres, M.A., Linstead, P., Costa, S., Brownlee, C., Jones, J.D., Davies, J.M., and Dolan, L. 2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422: 442−446.PubMedCrossRefGoogle Scholar
  38. Gao, L.L., Knogge, W., Delp, G., Smith, F.A., and Smith, S.E. 2004. Expression patterns of defense-related genes in different types of arbuscular mycorrhizal development in wild-type and mycorrhiza-defective mutant tomato. Molecular Plant-Microbe Interaction 17: 1103–1113.CrossRefGoogle Scholar
  39. García-Garrido, J.M. and Ocampo, J.A. 2002. Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. Journal of Experimental Botany 53: 1377–1386.PubMedCrossRefGoogle Scholar
  40. Glen, M., Tommerup, I.C., Bougher, N.L., and O'Brien, P.A. 2002. Are Sebacinaceae common and widespread ectomycorrhizal associates of Eucalyptus species in Australian forests? Mycorrhiza 12: 243–247.PubMedCrossRefGoogle Scholar
  41. Grunwald, U., Nyamsuren, O., Tamasloukht, M., Lapopin, L., Becker, A., Mann, P., Gianinazzi-Pearson, V., Krajinski, F., and Franken, P. 2004. Identification of mycorrhiza-regulated genes with arbuscule development-related expression profile. Plant Molecular Biology 55: 553–566.PubMedCrossRefGoogle Scholar
  42. Hackbusch, J., Richter, K., Müller, J., Salamini, F., and Uhrig, J.F. 2005. A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proceedings of the National Academy of Sciences USA 102: 4908–4912.CrossRefGoogle Scholar
  43. Harrison, M.J. 1999. Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annual Reviews of Plant Physiology and Plant Molecular Biology 50: 361–389.CrossRefGoogle Scholar
  44. Harrison, M.J. 2005. Signaling in the arbuscular mycorrhizal symbiosis. Annual Reviews of Microbiology 59: 19–42.CrossRefGoogle Scholar
  45. Hause, B. and Fester, T. 2005. Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta 221: 184–196.PubMedCrossRefGoogle Scholar
  46. He, P., Shan, L., Lin, N.C., Martin, G.B., Kemmerling, B., Nürnberger, T., and Sheen, J. 2006. Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidopsis innate immunity. Cell 125: 563–575.PubMedCrossRefGoogle Scholar
  47. Imaizumi-Anraku, H., Takeda, N., Charpentier, M., Perry, J., Miwa, H., Umehara, Y., Kouchi, H., Murakami, Y., Mulder, L., Vickers, K., Pike, J., Allan Downie, J., Wang, T., Sato, S., Asamizu, E., Tabata, S., Yoshikawa, M., Murooka, Y., Wu, G.J., Kawaguchi, M., Kawasaki, S., Parniske, M., and Hayashi, M. 2005. Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433: 527–531.PubMedCrossRefGoogle Scholar
  48. Jabs, T., Tschöpe, M., Colling, C., Hahlbrock, K., and Scheel, D. 1997. Elicitor-stimulated ion fluxes and O2- from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proceedings of the National Academy of Sciences USA 94: 4800–4805.CrossRefGoogle Scholar
  49. Jander, G., Norris, S.R., Rounsley, S.D., Bush, D.F., Levin, I.M., and Last, R.L. 2002. Arabidopsis map-based cloning in the postgenome era. Plant Physiology 129: 440–450.PubMedCrossRefGoogle Scholar
  50. Julou, T., Burghardt, B., Gebauer, G., Verveiller, D., Damesin, C., and Selosse, M.-A. 2005. Evolution of mixotrophy in orchids: insight from a comparative study of green and achlorophyllous Cephalanthera damasonium. New Phytologist 166: 639–653.PubMedCrossRefGoogle Scholar
  51. Kaldorf, M., Koch, B., Rexer, K.H., Kost, G., and Varma, A. 2005. Patterns of interaction between Populus Esch5 and Piriformospora indica: a transition from mutualism to antagonism. Plant Biology 7: 210–218.PubMedCrossRefGoogle Scholar
  52. Kalo, P., Gleason, C., Edwards, A., Marsh, J., Mitra, R.M., Hirsch, S., Jakab, J., Sims, S., Long, S.R., and Rogers, R. et al. 2005. Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science 308: 1786–1789.PubMedCrossRefGoogle Scholar
  53. Kennedy, P.G., Izzo, A.D., and Bruns, T.D. 2003. There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. Journal of Ecology 91: 1071–1080.CrossRefGoogle Scholar
  54. Kim, M.G., da Cunha, L., McFall, A.J., Belkhadir, Y., DebRoy, S., Dangl, J.L., and Mackey, D. 2005. Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121: 749–759.PubMedCrossRefGoogle Scholar
  55. Knight, M.R., Campbell, A.K., Smith, S.M., and Trewavas, A.J. 1991. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352: 524–526.PubMedCrossRefGoogle Scholar
  56. Kogel, K.H., Franken, P., and Hückelhoven, R. 2006. Endophyte or parasite-what decides? Current Opinion in Plant Biology 9: 358–363.PubMedCrossRefGoogle Scholar
  57. Kroj, T., Rudd, J.J., Nürnberger, T., Gabler, Y., Lee, J., and Scheel, D. 2003. Mitogen-activated protein kinases play an essential role in oxidative burst-independent expression of pathogenesis-related genes in parsley. Journal of Biological Chemistry 278: 2256–2264.PubMedCrossRefGoogle Scholar
  58. Kottke, I., Beiter, A., Weiss, M., Haug, I., Oberwinkler, F., and Nebel, M. 2003. Heterobasidiomycetes form symbiotic associations with hepatics: Jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycological Research 107: 957–968.PubMedCrossRefGoogle Scholar
  59. Lambais, M.R. and Mehdy, M.C. 1995. Differential expression of defense-related genes in arbuscular mycorrhiza. Canadian Journal of Botany 73: S533–S540.CrossRefGoogle Scholar
  60. Lanfranco, L., Novero, M., and Bonfante, P. 2005. The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase that is up-regulated during symbiosis with legume hosts. Plant Physiology 137: 1319–1330.PubMedCrossRefGoogle Scholar
  61. Lee, J., Rudd, J.J., Macioszek, V.K., and Scheel, D. 2004. Dynamic changes in the localization of MAPK cascade components controlling pathogenesis-related (PR) gene expression during innate immunity in parsley. Journal of Biological Chemistry 279: 22440–22448.PubMedCrossRefGoogle Scholar
  62. Levy, J., Bres, C., Geurts, R., Chalhoub, B., Kulikova, O., Duc, G., Journet, E.P., Ané, J.M., Lauber, E., Bisseling, T., Denarie, J., Rosenberg, C., and Debelle, F. 2004. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303: 1361–1364.PubMedCrossRefGoogle Scholar
  63. Li, C., Ni, C.Z., Havert, M.I., Cabezas, E., He, J., Kaiser, D., Reed, J.C., Satterswaith, A.C., Cheng, G., and Ely, K.R. 2002. Downstream regulator TANK binds to the CD40 recognition site on TRAF3. Structure 10: 403–411.PubMedCrossRefGoogle Scholar
  64. Ligterink, W., Kroj, T., zur Nieden, U., Hirt, H., and Scheel, D. 1997. Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science 276: 2054–2057.PubMedCrossRefGoogle Scholar
  65. Limpens, E., Franken, C., Smit, P., Willemse, J., Bisseling, T., and Geurts, R. 2003. LysM domain receptor kinases regulating rhizobial nod factor-induced infection. Science 302: 630–633.PubMedCrossRefGoogle Scholar
  66. Lipka, V., Dittgen, J., Bednarek, P., Bhat, R., Wiermer, M., Stein, M., Landtag, J., Brandt, W., Rosahl, S., Scheel, D., Llorente, F., Molina, A., Parker, J., Somerville, S., and Schulze-Lefert, P. 2005. Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310: 1180–1183.PubMedCrossRefGoogle Scholar
  67. Ludwig-Müller, J. 1999. The biosynthesis of auxins. Current Topics in Plant Biology 1: 77–88.Google Scholar
  68. Lumini, E., Ghignone, S., Bianciotto, V., and Bonfante, P. 2006. Endobacteria or bacterial endosymbionts? To be or not to be. New Phytologist 170: 205–208.PubMedCrossRefGoogle Scholar
  69. Madsen, E.B., Madsen, L.H., Radutoiu, S., Olbryt, M., Rakwalska, M., Szczyglowski, K., Sato, S., Kaneko, T., Tabata, S., Sandal, N., and Stougaard, J. 2003. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425: 637–640.PubMedCrossRefGoogle Scholar
  70. Malla, R., Prasad, R., Kumari, R., Giang, P.H., Pokharel, U., Oelmüller, R., and Varma, A. 2004. Phosphorus solubilizing symbiotic fungus: Piriformospora indica. Endocytobiosis Cell Research 15: 579–600.Google Scholar
  71. McKendrick, S.L., Leake, J.R., Taylor, D.L., and Read, D.J. 2002. Symbiotic germination and development of the mycoheterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina spp. New Phytologist 154: 233–247.CrossRefGoogle Scholar
  72. McWhirter, S.M., Pullen, S.S., Holton, J.M., Crute, J.J., Kehry, M.R., and Alber, T. 1999. Crystallographic analysis of CD40 recognition and signaling by human TRAF2. Proceedings of the National Academy of Sciences USA 96: 8408–8413.CrossRefGoogle Scholar
  73. Meijer, H.J. and Munnik, T. 2003. Phospholipid-based signaling in plants. Annual Reviews of Plant Biology 54: 265–306.CrossRefGoogle Scholar
  74. Mikkelsen, M.D., Naur, P., and Halkier, B.A. 2004. Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant Journal 37: 770–777.PubMedCrossRefGoogle Scholar
  75. Mitra, R.M., Gleason, C.A., Edwards, A., Hadfield, J., Downie, J.A., Oldroyd, G.E., and Long, S.R. 2004. A Ca2+/calmodulindependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Proceedings of the National Academy of Sciences USA 101: 4701–4705.CrossRefGoogle Scholar
  76. Moyersoen, B. 2006. Pakaraimaea dipterocarpacea is ectomycorrhizal, indicating an ancient Gondwanaland origin for the ectomycorrhizal habit in Dipterocarpacea. New Phytologist 172: 753–762.PubMedCrossRefGoogle Scholar
  77. Müller, C.B. and Krauss, J. 2005. Symbiosis between grasses and asexual fungal endophytes. Current Opinion in Plant Biology 8: 450–456.PubMedCrossRefGoogle Scholar
  78. Müller-Moulé, P., Conklin, P.L., and Niyogi, K.K. 2002. Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant Physiology 128: 970–977.PubMedCrossRefGoogle Scholar
  79. Müller-Moulé, P., Golan, T., and Niyogi, K.K. 2004. Ascorbatedeficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress. Plant Physiology 134: 1163–1172.PubMedCrossRefGoogle Scholar
  80. Murray, J.D., Karas, B.J., Sato, S., Tabata, S., Amyot, L., and Szczyglowski, K. 2007. A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315: 101–104.PubMedCrossRefGoogle Scholar
  81. Nitz, I., Berkefeld, H., Puzio, P.S., and Grundler, F.M. 2001. Pyk10, a seedling and root specific gene and promoter from Arabidopsis thaliana. Plant Science 161: 337–346.PubMedCrossRefGoogle Scholar
  82. Nurmiaho-Lassilia, E., Timonen S., Haahtela K., and Shen, R. 1997. Bacterial colonization patterns of intact Pinus sylvestris mycorrhizospheres in dry pine forest soil: an electromicroscopy study. Canadian Journal of Microbiology 43: 1017–1035.CrossRefGoogle Scholar
  83. Nürnberger, T., Nennstiel, D., Jabs, T., Sacks, W.R., Hahlbrock, K., and Scheel, D. 1994. High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78: 449–460.PubMedCrossRefGoogle Scholar
  84. Oelmüller, R., Peškan-Berghöfer, T., Shahollari, B., Sherameti, I., and Varma, A. 2005. MATH-domain containing proteins represent a novel gene family in Arabidopsis thaliana and are involved in plant/microbe interactions. Physiologia Plantarum 124: 152–166.CrossRefGoogle Scholar
  85. Oelmüller, R., Shahollari, B., Peškan-Berghöfer, T., Trebicka, A., Giong, P.H., Sherameti, I., Oudhoff, M., Venus, Y., Altschmied, L., and Varma, A. 2004. Molecular analyses of the interaction between Arabidopsis roots and the growth-promoting fungus Piriformospora indica. Endocytobiosis Cell Research 15: 504–517.Google Scholar
  86. Oldroyd, G.E. and Downie, J.A. 2006. Nuclear calcium changes at the core of symbiosis signalling. Current Opinion in Plant Biology 9: 351–357.PubMedCrossRefGoogle Scholar
  87. Oldroyd, G.E., Harrison, M.J., and Udvardi, M. 2005. Peace talks and trade deals. Keys to long-term harmony in legume-microbe symbioses. Plant Physiology 137: 1205–1210.Google Scholar
  88. Oyama, T., Shimura, Y., and Okada, K. 2002. The IRE gene encodes a protein kinase homologue and modulates root hair growth in Arabidopsis. Plant Journal 30: 289–299.PubMedCrossRefGoogle Scholar
  89. Park, Y.C., Burkitt, V., Villa, A.R., Tong, L., and Wu, H. 1999. Structural basis for self-association and receptor recognition of human TRAF2. Nature 398: 533–538.PubMedCrossRefGoogle Scholar
  90. Paszkowski, U. 2006. Mutualism and parasitism: the yin and yang of plant symbioses. Current Opinion in Plant Biology 9: 364–370.PubMedCrossRefGoogle Scholar
  91. Peškan-Berghöfer, T., Shahollari, B., Giang, P.H., Hehl, S., Markert, C., Blanke, V., Varma, A.K., and Oelmüller, R. 2004. Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant-microbe interactions and involves early plant protein modifications in the endoplasmatic reticulum and at the plasma membrane. Physiologia Plantarum 122: 465–477.CrossRefGoogle Scholar
  92. Pham, G.H., Kumari, R., Singh, An., Sachdev, M., Prasad, R., Kaldorf, M., Buscot, F., Oelmüller, R., Peškan, T., Weiss, M., Hampp, R., and Varma, A. 2004a. Axenic cultures of Piriformospora indica. In: Plant Surface Microbiology. Varma, A., Abbott, L., Werner, D., and Hampp, R., eds. Springer-Verlag, Germany, pp. 593–616.Google Scholar
  93. Pham, G.H., Singh, A.N., Malla, R., Kumari, R., Prasad, R., Sachdev, M., Rexer, K.-H., Kost, G., Luis, P., Kaldorf, M., Buscot, F., Herrmann, S., Peškan, T., Oelmüller, R., Saxena, A.K., Declerck, S., Mittag, M., Stabentheiner, E., Hehl, S., and Varma, A. 2004b. Interaction of Piriformospora indica with diverse microorganisms and plants. In: Plant Surface Microbiology. Varma, A., Abbott, L., Werner, D., and Hampp, R., eds. Springer-Verlag, New York, pp. 237–265.Google Scholar
  94. Pieterse, C.M.J, van Wees, S.C., van Pelt, J.A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P.J. and Loon, L.C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10: 1571–1580.PubMedCrossRefGoogle Scholar
  95. Porcel, R., Barea, J.M., and Ruiz-Lozano, J.M. 2003. Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytologist 157: 135–143.CrossRefGoogle Scholar
  96. Prime-A-Plant Group, Conrath, U., Beckers, G.J., Flors, V., García-Agustín, P., Jakab, G., Mauch, F., Newman, M.A., Pieterse, C.M., Poinssot, B., Pozo, M.J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L., and Mauch-Mani, B. 2006. Priming: getting ready for battle. Molecular Plant-Microbe Interaction 19: 1062–1071.CrossRefGoogle Scholar
  97. Radutoiu, S., Madsen, L.H., Madsen, E.B., Felle, H.H., Umehara, Y., Gronlund, M., Sato, S., Nakamura, Y., Tabata, S., and Sandal, N. et al. 2003. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425: 585–592.PubMedCrossRefGoogle Scholar
  98. Rai, M.K., Varma, A., and Pandey, A.K. 2004. Antifungal potential of Spilanthes calva after inoculation of Piriformospora indica. Mycoses 47: 479–481.PubMedCrossRefGoogle Scholar
  99. Rennenberg, H., Loreto, F., Polle, A., Brilli, F., Fares, S., Beniwal, R.S., and Gessler, A. 2006. Physiological responses of forest trees to heat and drought. Plant Biology 8: 556–571.PubMedCrossRefGoogle Scholar
  100. Rentel, M.C., Lecourieux, D., Ouaked, F., Usher, S.L., Petersen, L., Okamoto, H., Knight, H., Peck, S.C., Grierson, C.S., Hirt, H., and Knight, M.R. 2004. OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427: 858–861.PubMedCrossRefGoogle Scholar
  101. Richard, F., Millot, S., Gardes, M., and Selosse, M.A. 2005. Diversity and structuration by hosts of the below-ground mycorrhizal community in an old-growth Mediterranean forest dominated by Quercus ilex L. New Phytologist 166: 1011–1023.PubMedCrossRefGoogle Scholar
  102. Riefler, M., Novak, O., Strnad, M., and Schmülling, T. 2006. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18: 40–54.PubMedCrossRefGoogle Scholar
  103. Rodriguez, R.J., Henson, J., Van Volkenburgh, E., Hoy, M., Wright, L., Beckwith, F., Kim, Y.O., and Redman, R.S. 2005. Stress tolerance in plants via habitat-adapted symbiosis. ISME Journal 2: 404–416.CrossRefGoogle Scholar
  104. Roelfsema, M.R. and Hedrich, R. 2005. In the light of stomatal opening: new insights into 'the Watergate'. New Phytologist 167: 665–691.PubMedCrossRefGoogle Scholar
  105. Rudd, J.J. and Franklin-Tong, V.E. 1999. Calcium signaling in plants. Cellular and Molecular Life Science 55: 214–232.CrossRefGoogle Scholar
  106. Ruiz-Lozano, J.M., Azcon, R., and Palma, J.M. 1996. Superoxide dismutase activity in arbuscular mycorrhizal Lactuca sativa plants subjected to drought stress. New Phytologist 134: 327–333.CrossRefGoogle Scholar
  107. Sahay, N.S. and Varma, A. 1999. Piriformospora indica: a new biological hardening tool for micropropagated plants. FEMS Microbiological Letters 181: 297–302.CrossRefGoogle Scholar
  108. Sbrana, C., Bagnoli, G., Bedini, S., Filippi, C., Giovannetti, M., and Nuti, M.P. 2000. Adhesion to hyphal matrix and antifungal activity of Pseudomonas strains isolated from Tuber borchii ascocarps. Canadian Journal of Microbiology 46: 259–268.PubMedCrossRefGoogle Scholar
  109. Schäfer, P., Khatabi, B., and Kogel, K.H. 2007. Root cell death and systemic effects of Piriformospora indica: a study on mutualism. FEMS Microbiological Letters 275: 1–7.CrossRefGoogle Scholar
  110. Schardl, C.L., Leuchtmann, A., and Spiering, M.J. 2004. Symbioses of grasses with seedborne fungal endophytes. Annual Reviews of Plant Biology 55: 315–340.CrossRefGoogle Scholar
  111. Schulz, B. and Boyle, C. 2005. The endophytic continuum. Mycological Research 109: 661–686.PubMedCrossRefGoogle Scholar
  112. Schroeder, J.I., Kwak, J.M., and Allen, G.J. 2001. Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410: 327–330.PubMedCrossRefGoogle Scholar
  113. Seki, M., Kamei, A., Yamaguchi-Shinozaki, K., and Shinozaki, K. 2003. Molecular responses to drought, salinity and frost: common and different paths for plant protection. Current Opinion in Biotechnology 14: 194–199.PubMedCrossRefGoogle Scholar
  114. Seki, M., Narusaka, M., Ishida, J., Nanjo, T., and Fujita, M. et al. 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a fulllength cDNA microarray. Plant Journal 31: 279–292.PubMedCrossRefGoogle Scholar
  115. Seki, M., Umezawa, T., Urano, K., and Shinozaki, K. 2007. Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology 10: 296–302.PubMedCrossRefGoogle Scholar
  116. Selosse, M.-A., Bauer, R., and Moyersoen, B. 2002a. Basal hymenomycetes belonging to the Sebacinaceae are ectomycorrhizal on temperate deciduous trees. New Phytologist 155: 183–195.CrossRefGoogle Scholar
  117. Selosse, M.A., Setaro, S., Glatard, F., Richard, F., Urcelay, C., and Weiss, M. 2007. Sebacinales are common mycorrhizal associates of Ericaceae. New Phytologist 174: 864–878.PubMedCrossRefGoogle Scholar
  118. Selosse, M.A., Weiss, M., Jany, J.L., and Tillier, A. 2002b. Communities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis (L.) L.C.M. Rich. and neighbouring tree ectomycorrhizae. Molecular Ecology 11: 1831–1844.PubMedCrossRefGoogle Scholar
  119. Selosse, M.A., Faccio, A., Scappaticci, G., and Bonfante, P. 2004. Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microbial Ecology 47: 416–426.PubMedCrossRefGoogle Scholar
  120. Serfling, A., Wirsel, S.G.R., Lind, V., and Deising, H.B. 2007. Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathology 97: 523–531.PubMedCrossRefGoogle Scholar
  121. Setaro, S., Weiss, M., Oberwinkler, F., and Kottke, I. 2006. Sebacinales form ectendomycorrhizas with Cavendishia nobilis, a member of the Andean clade of Ericaceae, in the mountain rain forest of southern Ecuador. New Phytologist 169: 355–365.PubMedCrossRefGoogle Scholar
  122. Shahollari, B., Bhatnagar, K., Sherameti, I., Varma, A., and Oelmüller, R. 2007b. Molecular symbiotic analysis between Arabidopsis thaliana and Piriformospora indica. In: Soil Biology 11, Advances Techniques in Soil Microbiology. Varma, A. and Oelmüller, R., eds. Springer, Heidelberg, Berlin, pp. 307–318.CrossRefGoogle Scholar
  123. Shahollari, B., Peškan-Berghöfer, T., Varma, A., and Oelmüller, R. 2004. Receptor kinases with leucine-rich repeats are enriched in Triton X-100 insoluble plasma membrane microdomains from plants. Physiologia Plantarum 122: 397–403.CrossRefGoogle Scholar
  124. Shahollari, B., Vadassery, J., Varma, A., and Oelmüller, R. 2007a. A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana. Plant Journal 50: 1–13.PubMedCrossRefGoogle Scholar
  125. Shahollari, B., Varma, A., and Oelmüller, R. 2005. Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. Journal of Plant Physiology 162: 945–958.PubMedCrossRefGoogle Scholar
  126. Sharma, M., Schmid, M., Rothballer, M., Hause, G., Zuccaro, A., Imani, J., Kämpfer, P., Domann, E., Schäfer, P., Hartmann, A., and Kogel, K.H. 2008. Detection and identification of bacteria intimately associated with fungi of the order Sebacinales. Cellular Microbiology 10: 2235–2246.PubMedCrossRefGoogle Scholar
  127. Sherameti, I., Shahollari, B., Venus, Y., Altschmied, L., Varma, A., and Oelmüller, R. 2005. The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor which binds to a conserved motif in their promoters. Journal of Biological Chemistry 280: 2641–2647.CrossRefGoogle Scholar
  128. Sherameti, I., Tripathi, S., Varma, A., and Oelmüller, R. 2008a. The root-colonizing endophyte Piriformospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Molecular Plant-Microbe Interaction 21: 799–807.CrossRefGoogle Scholar
  129. Sherameti, I.., Venus, Y., Drzewiecki, C., Tripathi, S., Dan, V.M., Nitz, I., Varma, A., Grundler, F.M., and Oelmüller, R. 2008b. PYK10, a β-glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica. Plant Journal 54: 428–439.PubMedCrossRefGoogle Scholar
  130. Shinozaki, K. and Yamaguchi-Shinozaki, K. 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany 58: 221–227.PubMedCrossRefGoogle Scholar
  131. Shinozaki, K., Yamaguchi-Shinozaki, K., and Seki, M. 2003. Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology 6: 410–417.PubMedCrossRefGoogle Scholar
  132. Sirrenberg, A., Göbel, C., Grond, S., Czempinski, N., Ratzinger, A., Karlovsky, P., Santos, P., Feussner, I., and Pawlowski, K. 2007. Piriformospora indica affects plant growth by auxin production. Physiologia Plantarum 131: 581–589.PubMedCrossRefGoogle Scholar
  133. Smit P, Raedts J, Portyanko V, Debelle F, Gough C, Bisseling T, Geurts R (2005a) NSP1 of the GRAS protein family is essential for rhizobial nod factor-induced transcription. Science 308:1789–1791PubMedCrossRefGoogle Scholar
  134. Smit, P., Raedts, J., Portyanko, V., Debelle, F., Gough, C., Bisseling, T., and Geurts, R. 2005. NSP1 of the GRAS protein family is essential for rhizobial nod factor-induced transcription. Science 308: 1789–1791.PubMedCrossRefGoogle Scholar
  135. Stein, E., Molitor, A., Kogel, K.H. and Waller, F. 2008. Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiology 49: 1747–1751.PubMedCrossRefGoogle Scholar
  136. Tanaka, A., Christensen, M.J., Takemoto, D., Park, P., and Scott, B. 2006. Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction. Plant Cell 18: 1052–1066.PubMedCrossRefGoogle Scholar
  137. Taylor, D.L., Bruns, T.D., Szaro, T.S., and Hodges, S.A. 2003. Divergence in mycorrhizal specialization within Hexalectris spicata (Orchidaceae), a non-photosynthetic desert orchid. American Journal of Botany 90: 1168–1179.CrossRefGoogle Scholar
  138. Tedersoo, L., Suvi, T., Larsson, E., and Kõljalg, U. 2006. Diversity and community structure of ectomycorrhizal fungi and a wooded meadow. Mycological Research 110: 734–748.PubMedCrossRefGoogle Scholar
  139. Testerink, C. and Munnik, T. 2005. Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends in Plant Science 10: 368–375.PubMedCrossRefGoogle Scholar
  140. Tirichine, L., Sandal, N., Madsen, L.H., Radutoiu, S., Albrektsen, A.S., Sato, S., Asamizu, E., Tabata, S., and Stougaard, J. 2007. A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315: 104–107.PubMedCrossRefGoogle Scholar
  141. Trewavas, A. 1999. Le calcium, C'est la vie: calcium makes waves. Plant Physiology 120: 1–6.PubMedCrossRefGoogle Scholar
  142. Urban, A., Weiss, M., and Bauer, R. 2003. Ectomycorrhizas involving sebacinoid mycobionts. Mycological Research 107: 3–14.PubMedCrossRefGoogle Scholar
  143. Vadassery, J., Ritter, C., Venus, Y., Camehl, I., Varma, A., Shahollari, B., Novák, O., Strnad, M., Ludwig-Müller, J., and Oelmüller, R. 2008a. The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Molecular Plant-Microbe Interaction 21: 1371–1383.CrossRefGoogle Scholar
  144. Vadassery, J., Ranf, S., Mithöfer, A., Mazars, C., Scheel, D., Lee, J., and Oelmüller, R. 2009a. A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. Plant Journal 59: 193–206.PubMedCrossRefGoogle Scholar
  145. Vadassery, J., Tripathi, S., Prasad, R., Varma, A., and Oelmüller, R. 2009b. Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis. Journal of Plant Physiology 166: 1263–1274.PubMedCrossRefGoogle Scholar
  146. van der Luit, A.H., Olivari, C., Haley, A., Knight, M.R., and Trewavas, A.J. 1999. Distinct signaling pathways regulate calmodulin gene expression in tobacco. Plant Physiology 121: 705–714.CrossRefGoogle Scholar
  147. Varma, A. and Oelmüller, R. 2007. Soil Biology. Advanced Techniques in Soil Microbiology. Springer, Heidelberg, Berlin.Google Scholar
  148. Varma, A., Singh, A., Sudha, Sahay, N., Sharma, J., Roy, A., Kumari, M., Rana, D., Thakran, S., Deka, D., Bharti, K., Franken, P., Hurek, T., Blechert, O., Rexer, K.-H., Kost, G., Hahn, A., Hock, B., Maier, W., Walter, M., Strack, D., and Kranner, I. 2001. Piriformospora indica: A cultivable mycorrhiza-like endosymbiotic fungus. In: Mycota IX. Springer Series, Germany, pp. 123–150.Google Scholar
  149. Varma, A., Verma, S., Sudha, Sahay, N.S., Bütehorn, B., and Franken, P. 1999. Piriformospora indica, a cultivable plant growth promoting root endophyte. Applied and Environmental Microbiology 65: 2741–2744.PubMedGoogle Scholar
  150. Verma, S.A., Varma, A., Rexer, K.-H., Hassel, A., Kost, G., Sarbhoy, A., Bisen, P., Bütehorn, B., and Franken, P. 1998. Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90: 898–905.CrossRefGoogle Scholar
  151. Vierheilig, H., Alt, M., Lange, J., Gut-Rella, M., Wiemken, A., and Boller, T. 1995. Colonization of transgenic tobacco constitutively expressing pathogenesis-related proteins by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Applied and Environmental Microbiology 61: 3031–3034.PubMedGoogle Scholar
  152. Volpin, H., Elkind, Y., Okon, Y., and Kapulnik, Y. 1994. A vesicular arbuscular mycorrhizal fungus (Glomus intraradix) induces a defense response in alfalfa roots. Plant Physiology 104: 683–689.PubMedGoogle Scholar
  153. Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Hückelhoven, R., Neumann, C., von Wettstein, D., Franken, P., and Kogel, K.H. 2005. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences USA 102: 13386–13391.CrossRefGoogle Scholar
  154. Waller, F., Achatz, B., and Kogel, K.-H. 2007. Analysis of plant protective potential of the root endophytic fungus Piriformospora indica in cereals. In: Soil Biology 11. Advanced Techniques in Soil Microbiology. Varma, A. and Oelmüller, R., eds. Springer, Heidelberg, Berlin, pp. 343–354.Google Scholar
  155. Waller, F., Mukherjee, K., Deshmukh, S.D., Achatz, B., Sharma, M., Schäfer, P., and Kogel, K.H. 2008. Systemic and local modulation of plant responses by Piriformospora indica and related Sebacinales species. Journal of Plant Physiology 165: 60–70.PubMedCrossRefGoogle Scholar
  156. Walley, F.L. and Germidia, J.J. 1997. Response of spring wheat (Triticum aestivum) to interactions between Pseudomonas species and Glomus clarum NT 4. Biology and Fertility of Soils 24: 365–371.CrossRefGoogle Scholar
  157. Walker, J.F., Miller, O.K., and Horton, J.L. 2004. Hyperdiversity of ectomycorrhizal fungus assemblages on oak seedlings in mixed forests in the southern Appalachian Mountains. Molecular Ecology 14: 829–838.CrossRefGoogle Scholar
  158. Warcup, J.H. 1988. Mycorrhizal associations of isolates of Sebacina vermifera. New Phytologist 110: 227–231.CrossRefGoogle Scholar
  159. Weiss, M. and Oberwinkler, F. 2001. Phylogenetic relationships in Auriculariales and related groups – hypotheses derived from nuclear ribosomal DNA sequences. Mycological Research 105: 403–415.CrossRefGoogle Scholar
  160. Weiss, M., Selosse, M.A., Rexer, K.H., Urban, A., and Oberwinkler, F. 2004. Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycological Research 108: 1003–1010.PubMedCrossRefGoogle Scholar
  161. Werner, T., Motyka, V., Laucou, V., Smets, R., Van Onckelen, H., and Schmülling, T. 2003. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15: 2532–2550.PubMedCrossRefGoogle Scholar
  162. Xiong, L., Schumaker, K.S., and Zhu, J.K. 2002. Cell signaling during cold, drought, and salt stress. Plant Cell 14: 65–83.Google Scholar
  163. Yamaguchi-Shinozaki, K. and Shinozaki, K. 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Reviews of Plant Biology 57: 781–803.CrossRefGoogle Scholar
  164. Ye, H., Arron, J.R., Lamothe, B., Cirilli, M., Kobayashi, T., Shevde, N.K., Segal, D., Dzivenu, O.K., Vologodskaia, M., Yim, M., Du, K., Singh, S., Pike, J.W., Darnay, B.G., Choi, Y., and Wu, H. 2002. Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418: 443–447.PubMedCrossRefGoogle Scholar
  165. Zimmermann, S., Nürnberger, T., Frachisse, J.M., Wirtz, W., Guern, J., Hedrich, R., and Scheel, D. 1997. Receptor-mediated activation of a plant Ca (2+)-permeable ion channel involved in pathogen defense. Proceedings of the National Academy of Sciences USA 94: 2751–2755.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ralf Oelmüller
    • 1
    Email author
  • Irena Sherameti
    • 1
  • Swati Tripathi
    • 2
  • Ajit Varma
    • 2
  1. 1.Friedrich-Schiller-Universität Jena, Institut für Allgemeine Botanik und PflanzenphysiologieJenaGermany
  2. 2.Amity Institute of Microbial TechnologyAmity University Uttar PradeshNoidaIndia

Personalised recommendations