Skip to main content
Log in

Quantum-inspired evolutionary approach for selection of optimal parameters of fuzzy clustering

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

Recently, Fuzzy c-Means (FCM) algorithm is most widely used because of its efficiency and simplicity. However, FCM is sensitive to the initialization of fuzziness factor (m) and the number of clusters (c) due to which it easily trapped in local optima. A selection of these parameters is a critical issue because an adverse selection can blur the clusters in the data. In the available fuzzy clustering literature, cluster validity index is used to determine the optimal number of clusters for the dataset, but these indexes may trap into the local optima due to the random selection of m. From the perspective of handling local optima problem, we proposed a hybrid fuzzy clustering approach referred as quantum-inspired evolutionary fuzzy c-means algorithm. In the proposed approach, we integrate the concept of quantum computing with FCM to evolve the parameter m in several generations. The evolution of fuzziness factor (m) with the quantum concept aims to provide the better characteristic of population diversity and large search space to find the global optimal value of m and its corresponding value of c. Experiments using three real-world datasets are reported and discussed. The results of the proposed approach are compared to those obtained from validity indexes like \(V_{CWB}\) and \(V_{OS}\) and evolutionary fuzzy based clustering algorithms. The results show that proposed method achieves the global optimal value of m, c with a minimum value of fitness function and shows significant improvement in the convergence times (the number of iterations) as compared to the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bandyopadhyay S (2011) Genetic algorithms for clustering and fuzzy clustering. Wiley Interdiscip Rev Data Min Knowl Discov 1(6):524–531

    Article  Google Scholar 

  • Bandyopadhyay S, Maulik U (2001) Nonparametric genetic clustering: comparison of validity indexes. IEEE Transact Syst Man Cybern Part C (Appl Rev) 31(1):120–125

    Article  Google Scholar 

  • Baskir MB, Turksen IB (2013) Enhanced fuzzy clustering algorithm and cluster validity index for human perception. Expert Syst Appl 40(3):929–937

    Article  Google Scholar 

  • Begum SA, Devi OM (2011) Fuzzy algorithms for pattern recognition in medical diagnosis. Assam Univ J Sci Technol 7(2):1–12

    Google Scholar 

  • Bezdek J (1998) Pattern recognition in handbook of fuzzy computation. IOP Publishing Ltd., Boston

    Google Scholar 

  • Bezdek JC (1973) Cluster validity with fuzzy sets. Taylor and Francis, London

  • Bezdek JC (1974) Numerical taxonomy with fuzzy sets. J Math Biol 1(1):57–71

    Article  MathSciNet  MATH  Google Scholar 

  • Bezdek JC (2013) Pattern recognition with fuzzy objective function algorithms. Springer, Berlin

    MATH  Google Scholar 

  • Bezdek JC, Ehrlich R, Full W (1984) Fcm: the Fuzzy c-Means clustering algorithm. Comput Geosci 10(2–3):191–203

    Article  Google Scholar 

  • Bharill N, Tiwari A (2014) Enhanced cluster validity index for the evaluation of optimal number of clusters for Fuzzy c-Means algorithm. In: IEEE international conference proceedings of the 2014 on fuzzy systems (FUZZ-IEEE), IEEE, pp 1526–1533

  • Dunn JC (1973) A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. Taylor and Francis, London

  • Erilli NA, Yolcu U, Egrioglu E, Aladag CH, Oner Y (2011) Determining the most proper number of cluster in fuzzy clustering by using artificial neural networks. Expert Syst Appl 38(3):2248–2252

    Article  Google Scholar 

  • Flores-Sintas A, Cadenas J, Martin F (1999) Membership functions in the Fuzzy c-Means algorithm. Fuzzy Sets Syst 101(1):49–58

    Article  Google Scholar 

  • Fukuyama Y, Sugeno M (1989) A new method of choosing the number of clusters for the Fuzzy c-Means method. In: Proceedings 5th fuzzy system symposium, vol 247, pp 247–250

  • Han KH, Kim JH (2002) Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans Evol Comput 6(6):580–593

    Article  MathSciNet  Google Scholar 

  • Han KH, Kim JH (2004) Quantum-inspired evolutionary algorithms with a new termination criterion, h/sub/spl epsi//gate, and two-phase scheme. IEEE Trans Evol Comput 8(2):156–169

    Article  Google Scholar 

  • Hey T (1999) Quantum computing: an introduction. Comput Control Eng J 10(3):105–112

    Article  Google Scholar 

  • Höppner F (1999) Fuzzy cluster analysis: methods for classification, data analysis and image recognition. Wiley, New York

    MATH  Google Scholar 

  • Huang M, Xia Z, Wang H, Zeng Q, Wang Q (2012) The range of the value for the fuzzifier of the Fuzzy c-Means algorithm. Pattern Recogn Lett 33(16):2280–2284

    Article  Google Scholar 

  • Hung CC, Casper E, Kuo BC, Liu W, Yu X, Jung E, Yang M (2013) A quantum-modeled Fuzzy c-Means clustering algorithm for remotely sensed multi-band image segmentation. In: Proceedings of the 2013 IEEE international geoscience and remote sensing symposium (IGARSS), IEEE, pp 2501–2504

  • Izakian H, Abraham A (2011) Fuzzy c-Means and fuzzy swarm for fuzzy clustering problem. Expert Syst Appl 38(3):1835–1838

    Article  Google Scholar 

  • Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern Recogn Lett 31(8):651–666

    Article  Google Scholar 

  • Kaufman L, Rousseeuw PJ (2009) Finding groups in data: an introduction to cluster analysis. Wiley, New York

    MATH  Google Scholar 

  • Kim DW, Lee KH, Lee D (2004) On cluster validity index for estimation of the optimal number of fuzzy clusters. Pattern Recogn 37(10):2009–2025

    Article  Google Scholar 

  • Li L, Liu X, Xu M (2007) A novel fuzzy clustering based on particle swarm optimization. In: Proceedings of the first IEEE international symposium on information technologies and applications in education, 2007 (ISITAE’07). IEEE, pp 88–90

  • Lichman M (2015) UCI machine learning repository, 2013. URL http://archive ics uci edu/ml 8

  • Lu TC, Yu GR, Juang JC (2013) Quantum-based algorithm for optimizing artificial neural networks. IEEE Transact Neural Netw Learn Syst 24(8):1266–1278

    Article  Google Scholar 

  • Ozkan I, Turksen I (2004) Entropy assessment for type-2 fuzziness. In: Proceedings of the 2004 IEEE international conference on fuzzy systems, 2004, vol 2. IEEE, pp 1111–1115

  • Pal NR, Bezdek JC (1995) On cluster validity for the fuzzy c-means model. IEEE Trans Fuzzy Syst 3(3):370–379

    Article  Google Scholar 

  • Petrick N, Sahiner B, Armato SG, Bert A, Correale L, Delsanto S, Freedman MT, Fryd D, Gur D, Hadjiiski L, Huo Z (2013) Evaluation of computeraided detection and diagnosis systems. Med Phys 40(8):1–16

    Article  Google Scholar 

  • Rezaee MR, Lelieveldt BP, Reiber JH (1998) A new cluster validity index for the Fuzzy c-Means. Pattern Recogn Lett 19(3):237–246

    Article  MATH  Google Scholar 

  • Silva Filho TM, Pimentel BA, Souza RM, Oliveira AL (2015) Hybrid methods for fuzzy clustering based on Fuzzy c-Means and improved particle swarm optimization. Expert Syst Appl 42(17):6315–6328

    Article  Google Scholar 

  • Stetco A, Zeng XJ, Keane J (2015) Fuzzy c-Means++: Fuzzy c-Means with effective seeding initialization. Expert Syst Appl 42(21):7541–7548

    Article  Google Scholar 

  • Wang H, Zhu W, Liu J, Li L, Yin Z (2014) Multidistribution center location based on real-parameter quantum evolutionary clustering algorithm. Math Probl Eng 2014:1–7

    MathSciNet  Google Scholar 

  • Webb AR (2003) Statistical pattern recognition. Wiley, New York

    MATH  Google Scholar 

  • Wu KL (2012) Analysis of parameter selections for Fuzzy c-Means. Pattern Recogn 45(1):407–415

    Article  MATH  Google Scholar 

  • Xiao J, Yan Y, Zhang J, Tang Y (2010) A quantum-inspired genetic algorithm for k-means clustering. Expert Syst Appl 37(7):4966–4973

    Article  Google Scholar 

  • Xu R, Wunsch D (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16(3):645–678

    Article  Google Scholar 

  • Yu J, Cheng Q, Huang H (2004) Analysis of the weighting exponent in the fcm. IEEE Transact Syst Man Cybern Part B (Cybern) 34(1):634–639

    Article  Google Scholar 

  • Zhou K, Fu C, Yang S (2014) Fuzziness parameter selection in Fuzzy c-Means: the perspective of cluster validation. Sci China Inf Sci 57(11):1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Bharill.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharill, N., Patel, O.P. & Tiwari, A. Quantum-inspired evolutionary approach for selection of optimal parameters of fuzzy clustering. Int J Syst Assur Eng Manag 9, 875–887 (2018). https://doi.org/10.1007/s13198-017-0681-x

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-017-0681-x

Keywords

Navigation