Evaluation of bioactive compounds and antioxidant capacity of edible feijoa (Acca sellowiana (O. Berg) Burret) flower extracts

  • Paola Montoro
  • Gabriele Serreli
  • Katarzyna Angelika Gil
  • Gilda D’Urso
  • Adam Kowalczyk
  • Carlo Ignazio Giovanni TuberosoEmail author
Original Article


The research aimed to evaluate the polyphenolic composition and the antioxidant capacity of edible extracts of feijoa (Acca sellowiana (O. Berg) Burret) flowers. Phenolic compounds of whole feijoa flower (FM), feijoa petals (PM) and feijoa petals juice (PJ) were identified by high-performance liquid chromatography coupled with electrospray mass spectrometry and quantified by liquid chromatography coupled with ultraviolet/visible detection. Moreover, the total polyphenol (TP) content was measured spectrophotometrically and the antioxidant capacities of the extracts were evaluated by FRAP, CUPRAC, DPPH·, and ABTS·+ assays. The FM showed TP content (395.14 ± 7.91 mg GAE/L) higher than PM and PJ, and exhibited better antioxidant capacities. FM extracts were characterized by the high content of anthocyanins (115.3 ± 3.6 mg/L), flavonols (42.9 ± 3.3 mg/L) and the presence of ellagic acid (7.9 ± 0.2 mg/L) and other galloyltannins. In addition, cyanidin-3-O-glucoside and apigenin were detected in all the three extracts. The present study provided an overview on particular bioactive compounds that characterise different parts of edible feijoa flowers. Among the latter, FM proved to be the most suitable for exploitation in the food and health manufactory.

Graphic abstract


Acca sellowiana (O. Berg) Burret Anthocyanins Antioxidant activity HPLC–DAD (HR) LC-ESI-Orbitrap-MS/MS 



This work was partially supported by the Fondazione di Sardegna under the project “Innovative antioxidant molecules for the food and health industry” (CUP F71I17000180002). The authors thank Dr. Angelo Farris and Dr. Anna Mereu for supplying samples, and Dr. Lorenzo Melis for helpful discussion.


  1. Ammar I, Ennouri M, Bouaziz M, Ben Amira A, Attia H (2015) Phenolic profiles, phytochemicals and mineral content of decoction and infusion of Opuntia ficus-indica flowers. Plant Foods Hum Nutr 70:388–394CrossRefGoogle Scholar
  2. Aoyama H, Sakagami HT, Hatano T (2018) Three new flavonoids, proanthocyanidin, and accompanying phenolic constituents from Feijoa sellowiana. Biosci Biotechnol Biochem 82:31–41CrossRefGoogle Scholar
  3. Baxter H, Harborne JB, Moss GP (1999) Phytochemical dictionary, vol 45, 2nd edn. Taylor and FrancisOxfordGoogle Scholar
  4. Bektaşǒglu B, Esin Celik S, Ozyürek M, Güçlü K, Apak R (2006) Novel hydroxyl radical scavenging antioxidant activity assay for water-soluble antioxidants using a modified CUPRAC method. Biochem Biophys Res Commun 345:1194–1200CrossRefGoogle Scholar
  5. Belous O, Omarov M, Omarova Z (2014) Chemical composition of fruits of a feijoa (Feijoa sellowiana) in the conditions of subtropics of Russia. Potr S J F Sci 8:119–123CrossRefGoogle Scholar
  6. D’Urso G, Sarais G, Lai C, Pizza C, Montoro P (2017) LC–MS based metabolomics study of different parts of myrtle berry from Sardinia (Italy). J Berry Res 7:217–229CrossRefGoogle Scholar
  7. De Lira Teixeira TL, Cleber Bertoldi F, Lajolo FM, Hassimotto NMA (2015) Identification of ellagitannins and flavonoids from Eugenia brasilienses Lam. (Grumixama) by HPLC-ESI-MS/MS. J Agric Food Chem 63:5417–5427CrossRefGoogle Scholar
  8. De Souza AG, Do Amarante CVT, Steffens CA, Benincá TD, Padilha M (2016) Postharvest quality of Feijoa flowers treated with different preservative solutions and 1-methylcyclopropene. Rev Bras Frutic SP 38:e-759Google Scholar
  9. Diaconeasa Z, Ayvaz H, Ruginǎ D, Leopold L, Stǎnilǎ A, Socaciu C, Tăbăran F, Luput L, Mada DC, Pintea A, Jefferson A (2017) Melanoma inhibition by anthocyanins is associated with the reduction of oxidative stress biomarkers and changes in mitochondrial membrane potential. Plant Foods Hum Nut 72:404–410CrossRefGoogle Scholar
  10. Doi K, Kojima T, Makino M, Kimura Y, Fujimoto Y (2001) Studies on the constituents of the leaves of Morus alba L. Chem Pharm Bull (Tokyo) 49:151–153CrossRefGoogle Scholar
  11. El-Shenawy SM, Marzouk MS, El Dib RA, Elyazed HEA, Shaffie NM, Moharram FA (2008) Polyphenols and biological activities of Feijoa sellowiana leaves and twigs. Rev Latinoam Quím 36:103–120Google Scholar
  12. Fernandes L, Casal L, Pereira JA, Ramalhosa E (2017) Edible flowers: a review of the nutritional, antioxidant, antimicrobial properties and effects on human health. J Food Compos Anal 60:38–50CrossRefGoogle Scholar
  13. Ferreres F, Grosso C, Gil-Izquierdo A, Valentao P, Andrade PB (2013) Ellagic acid and derivatives from Cochlospermum angolensis Welw. extracts: HPLC-DAD-ESI/MSn profiling, quantification and in vitro anti-depressant, anti-cholinesterase and anti-oxidant activities. Phytochem Anal 24:534–540CrossRefGoogle Scholar
  14. Fukuda T, Ito H, Yoshida T (2003) Antioxidative polyphenols from walnuts (Juglans regia L.). Phytochemistry 63:795–801CrossRefGoogle Scholar
  15. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Yokota Hirai M, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki H, Shibata D, Neumann S, Iida T, Tanaka K, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714CrossRefGoogle Scholar
  16. ICH Topic Q2 (R1) (2005) Validation of analytical procedures: text and methodology. Accessed 15 July 2018
  17. Jaiswal R, Karar MG, Gadir HA, Kuhnert N (2014) Identification and characterisation of phenolics from Ixora coccinea L. (Rubiaceae) by liquid chromatography multi-stage mass spectrometry. Phytochem Anal 25:567–576CrossRefGoogle Scholar
  18. Landete JM (2011) Ellagitannins, ellagic acid and their derived metabolites: a review about source, metabolism, functions and health. Food Res Int 44:1150–1160CrossRefGoogle Scholar
  19. Lu B, Li M, Yin R (2016) Phytochemical content, health benefits, and toxicology of common edible flower: a review (2000–2015). Crit Rev Food Sci Nutr 56:130–148CrossRefGoogle Scholar
  20. Mahmoud II, Marzouk MS, Moharram FA, El-Gindi MR, Hassan AM (2001) Acylated flavonol glycosides from Eugenia jambolana leaves. Phytochemistry 58:1239–1244CrossRefGoogle Scholar
  21. Mori M, Kondo T, Yoshida K (2009) Anthocyanin components and mechanism for color development in Blue Veronica flowers. Biosci Biotechol Biochem 73:2329–2331CrossRefGoogle Scholar
  22. Oga EF, Sekine S, Shitara Y, Horie T (2016) Pharmacokinetic herb-drug interactions: insight into mechanisms and consequences. Eur J Drug Metab Ph 41:93–108CrossRefGoogle Scholar
  23. Prenesti E, Berto S, Daniele PG, Toso S (2007) Antioxidant power quantification of decoction and cold infusions of Hibiscus sabdariffa flowers. Food Chem 100:433–438CrossRefGoogle Scholar
  24. Ramirez F, Kallarackal J (2017) Feijoa [Acca sellowiana (O. Berg) Burret] pollination: a review. Sci Hort 226:333–334CrossRefGoogle Scholar
  25. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237CrossRefGoogle Scholar
  26. Ruberto G, Tringali C (2004) Secondary metabolites from the leaves of Feijoa sellowiana Berg. Phytochemistry 65:2947–2951CrossRefGoogle Scholar
  27. Sarais G, D'Urso G, Lai C, Pirisi FM, Pizza C, Montoro P (2016) Targeted and untargeted mass spectrometric approaches in discrimination between Myrtus communis cultivars from Sardinia region. J Mass Spectrom 51:704–715CrossRefGoogle Scholar
  28. Święciło A, Rybczyńska-Tkaczyk K, Najda A, Krzepiłko A, Prażak R, Zawiślak G (2018) Application of growth tests employing a Δsod1 mutant of Saccharomyces cerevisiae to study the antioxidant activity of berry fruit extracts. LWT Food Sci Technol 94:96–102CrossRefGoogle Scholar
  29. Szajdek A, Borowska EJ (2008) Bioactive compounds and health-promoting properties of berry fruits: a review. Plant Foods Hum Nutr 63:147–156CrossRefGoogle Scholar
  30. Tuberoso CIG, Boban M, Bifulco E, Budimir D, Pirisi FM (2013) Antioxidant capacity and vasodilatory properties of Mediterranean food: the case of Cannonau wine, myrtle berries liqueur and strawberry-tree honey. Food Chem 140:686–691CrossRefGoogle Scholar
  31. Tuberoso CIG, Serreli G, Congiu F, Montoro P, Fenu MA (2017) Characterization, phenolic profile, nitrogen compounds and antioxidant activity of Carignano wines. J Food Compos Anal 58:60–68CrossRefGoogle Scholar
  32. Veberic R, Slatnar A, Bizjak J, Stampar F, Mikulic-Petkovsek M (2015) Anthocyanin composition of different wild and cultivated berry species. LWT Food Sci Technol 60:509–517CrossRefGoogle Scholar
  33. Wang K-P, Zhang Q-L, Liu Y, Wang J, Cheng Y, Zhang Y (2013) Structure and inducing tumor cell apoptosis activity of polysaccharides isolated from Lentinus edodes. J Agric Food Chem 61:9849–9858CrossRefGoogle Scholar
  34. Weston RJ (2010) Bioactive products from fruit of the feijoa (Feijoa sellowiana, Myrtaceae): a review. Food Chem 21:923–926CrossRefGoogle Scholar
  35. Wu S-H, Chen Y-W, Yang L-Y, Li S-L, Li Z-Y (2008) A new ellagic acid glycoside from Paeonia delavayi. Fitoterapia 79:474–475CrossRefGoogle Scholar
  36. Zhu S, Yan H, Niu K, Zhang S (2015) Simultaneous determination of seven components from hawthorn leaves flavonoids in rat plasma by LC–MS/MS. J Chromatogr Sci 53:909–914CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2020

Authors and Affiliations

  1. 1.Department of PharmacyUniversity of SalernoFiscianoItaly
  2. 2.Department of Biomedical SciencesUniversity of CagliariMonserratoItaly
  3. 3.Department of Life and Environmental SciencesUniversity of CagliariCagliariItaly
  4. 4.Department of PharmacognosyWrocław Medical UniversityWrocławPoland

Personalised recommendations