Rheological effects of high substitution levels of fats by inulin in whole cassava dough: chemical and physical characterization of produced biscuits

  • S. Longoria-García
  • M. Cruz-Hernández
  • M. Flores-Verástegui
  • G. Martínez-Vázquez
  • J. Contreras-Esquivel
  • E. Jiménez-Regalado
  • R. Belmares-CerdaEmail author
Original Article


Inulin has been used as a fat substitute in baked goods due to its gelling properties and functionality. However, it usually has been done in low substitution levels. The aim of this study was to evaluate the effect in rheological parameters in cassava dough caused by high substitution levels of fats by inulin. Physical and chemical characterization of biscuits were done for evaluation of dough’s potential usage in bakery products. Substitution of mozzarella cheese by inulin showed that up to 12.5 g inulin per 100 g cassava flour led to a lower storage modulus, suggesting bakery potential for bread like products. Higher substitutions (25 g, 37.5 g, and 50 g per 100 g cassava flour) led to a higher storage modulus and suggest a potential for cookies and similar products. Hardness results obtained support rheological ones, suggesting higher substitution levels are suitable for cookies and similar products. This is inferred by observing an increase in hardness ranging from 5.80 N up to 17.47 N. Cassava dough with fat substituted by inulin in high levels, has potential in the development of different baked goods.


Inulin Fat substitution Cassava Dough Storage modulus 



This work was financed by the Mexican Consejo Nacional de Ciencia y Tecnología (CONACYT) through a graduate studies scholarship. Grateful acknowledgements are due to Ms. Ada Longoria for technical help.


  1. Abreu-Sherrer JS (2013) Aprovechamiento de bagazo Weber para la producción de. Instituto Potosino de Investigación Científica y Tecnológica, A.C., San LuisGoogle Scholar
  2. Böhm A, Kaiser I, Trebstein A, Henle T (2005) Heat-induced degradation of inulin. Eur Food Res Technol 220:466–471. CrossRefGoogle Scholar
  3. Cauvain S (2015) Technology of breadmaking, 3rd edn. Springer, WitneyGoogle Scholar
  4. Chel-Guerrero L, Parra-Pérez J, Betancur-Ancona D et al (2015) Chemical, rheological and mechanical evaluation of maize dough and tortillas in blends with cassava and malanga flour. J Food Sci Technol 52:4387–4395. CrossRefPubMedGoogle Scholar
  5. Fiorda FA, Soares MS, da Silva FA et al (2015) Physical quality of snacks and technological properties of pre-gelatinized flours formulated with cassava starch and dehydrated cassava bagasse as a function of extrusion variables. LWT Food Sci Technol 62:1112–1119. CrossRefGoogle Scholar
  6. Franck A (2002) Technological functionality of inulin and oligofructose. Br J Nutr 87(Suppl 2):S287–S291. CrossRefPubMedGoogle Scholar
  7. Guadarrama-Lezama AY, Carrillo-Navas H, Vernon-Carter EJ, Alvarez-Ramirez J (2016) Rheological and thermal properties of dough and textural and microstructural features of bread obtained from nixtamalized corn/wheat flour blends. J Cereal Sci 69:158–165. CrossRefGoogle Scholar
  8. Hager AS, Ryan LAM, Schwab C et al (2011) Influence of the soluble fibres inulin and oat β-glucan on quality of dough and bread. Eur Food Res Technol 232:405–413. CrossRefGoogle Scholar
  9. Jensen S, Skibsted LH, Kidmose U, Thybo AK (2015) Addition of cassava flours in bread-making: sensory and textural evaluation. LWT Food Sci Technol 60:292–299. CrossRefGoogle Scholar
  10. Laguna L, Primo-Martín C, Varela P et al (2014) HPMC and inulin as fat replacers in biscuits: sensory and instrumental evaluation. LWT Food Sci Technol 56:494–501. CrossRefGoogle Scholar
  11. Matos ME, Rosell CM (2013) Quality indicators of rice-based gluten-free bread-like products: relationships between dough rheology and quality characteristics. Food Bioprocess Technol 6:2331–2341. CrossRefGoogle Scholar
  12. Mensink MA, Frijlink HW, van der Voort Maarschalk K, Hinrichs WLJ (2015a) Inulin, a flexible oligosaccharide. II: review of its pharmaceutical applications. Carbohydr Polym 134:418–428. CrossRefPubMedGoogle Scholar
  13. Mensink MA, Frijlink HW, van der Voort Maarschalk K, Hinrichs WLJ (2015b) Inulin, a flexible oligosaccharide I: review of its physicochemical characteristics. Carbohydr Polym 130:405–419. CrossRefPubMedGoogle Scholar
  14. Meyer D, Bayarri S, Tárrega A, Costell E (2011) Inulin as texture modifier in dairy products. Food Hydrocoll 25:1881–1890. CrossRefGoogle Scholar
  15. Migliori M, Gabriele D, Baldino N et al (2011) Rheological properties of batter dough: effect of egg level. J Food Process Eng 34:1266–1281. CrossRefGoogle Scholar
  16. Morais EC, Cruz AG, Faria JAF, Bolini HMA (2014) Prebiotic gluten-free bread: sensory profiling and drivers of liking. LWT Food Sci Technol 55:248–254. CrossRefGoogle Scholar
  17. Reinhardt H, NeBambi L, Graeme T (2013) Save and grow cassava a guide to sustainable production intensification. Food and Agriculture Organization of the United Nations. FAO. ISBN 978-92-5-107641-5Google Scholar
  18. Rodríguez-García J, Puig A, Salvador A, Hernando I (2012) Optimization of a sponge cake formulation with inulin as fat replacer: structure, physicochemical, and sensory properties. J Food Sci. CrossRefPubMedGoogle Scholar
  19. Rodríguez-García J, Laguna L, Puig A et al (2013) Effect of fat replacement by inulin on textural and structural properties of short dough biscuits. Food Bioprocess Technol 6:2739–2750. CrossRefGoogle Scholar
  20. Ronda F, Pérez-Quirce S, Villanueva M (2017) Rheological properties of gluten-free bread doughs: relationship with bread quality. In: Ahmed J, Pstazek P, Banu S (eds) Advances in food rheology and its applications, 1st edn. Elsevier, Amsterdam, pp 297–334CrossRefGoogle Scholar
  21. Rößle C, Ktenioudaki A, Gallagher E (2011) Inulin and oligofructose as fat and sugar substitutes in quick breads (scones): a mixture design approach. Eur Food Res Technol 233:167–181. CrossRefGoogle Scholar
  22. Rubel IA, Pérez EE, Manrique GD, Genovese DB (2015) Fibre enrichment of wheat bread with Jerusalem artichoke inulin: effect on dough rheology and bread quality. Food Struct 3:21–29. CrossRefGoogle Scholar
  23. Salinas MV, Puppo MC (2013) Rheological properties of bread dough formulated with wheat flour-organic calcium salts–FOS-enriched inulin systems. Food Bioprocess Technol 7:1618–1628. CrossRefGoogle Scholar
  24. Shoaib M, Shehzad A, Omar M et al (2016) Inulin: properties, health benefits and food applications. Carbohydr Polym 147:444–454. CrossRefPubMedGoogle Scholar
  25. WHO/FAO (2002) Food energy methods of analysis and conversion factors. WHO/FAO, RomeGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2019

Authors and Affiliations

  1. 1.Departamento de Nutrición, Laboratorio de BromatologíaUniversidad de MonterreySan Pedro Garza GarcíaMexico
  2. 2.Departamento de Ciencia y Tecnología de AlimentosUniversidad Autónoma Agraria Antonio NarroBuenaventuraMexico
  3. 3.Departamento de Investigación en Alimentos, Facultad de Ciencias QuímicasUniversidad Autónoma de CoahuilaSaltilloMexico
  4. 4.Departamento de Procesos de PolimerizaciónCentro de Investigación en Química AplicadaSaltilloMexico

Personalised recommendations