Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A critical review of analytical methods for determination of curcuminoids in turmeric

  • 311 Accesses


Turmeric (Curcuma longa) is one of the most important ingredients in Indian and Chinese cuisine. Curcuminoids and volatile oils present in turmeric are known for their functional and nutraceutical properties. Health benefits attributed to curcuminoids have resulted in their wide utilization in food and pharmaceutical formulations. Therefore, characterization and estimation of the curcuminoids in fresh/dry turmeric, food and nutraceutical products are essential for their quality control during processing and storage. To meet the demand for analytical methods of curcuminoids, several methods have been developed for their quantification in turmeric powder and food formulations. In the present review, various analytical methods (spectrophotometric, chromatographic, capillary electrophoresis and biosensor techniques) which are used for monitoring curcuminoids have been thoroughly summarized and discussed. The spectrophotometric method is not useful when individual components of curcuminoids are required. Mobile phase optimization, the broadness of spots, plate-to-plate variations are significant limitations for TLC and HPTLC methods. Many analysts believe that HPLC method is the best choice for curcuminoids determination because of its rapid analysis. Spectrofluorimetry and Electrochemical methods are the more advanced methods with high sensitivity as well as rapid analysis. However, the selection of analytical method for curcuminoids analysis depends on the type of sample matrix, purpose of the analysis and limit of detection and limit of quantitation of the method.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Ali I, Haque A, Saleem K (2014) Separation and identification of curcuminoids in turmeric powder by HPLC using phenyl column. Anal Methods 6:2526–2536. https://doi.org/10.1039/c3ay41987h

  2. Ansari MJ, Ahmad S, Kohli K et al (2005) Stability-indicating HPTLC determination of curcumin in bulk drug and pharmaceutical formulations. J Pharm Biomed Anal 39:132–138. https://doi.org/10.1016/j.jpba.2005.03.021

  3. Attimarad M, Mueen Ahmed KK, Aldhubaib BE, Harsha S (2011) High-performance thin layer chromatography: a powerful analytical technique in pharmaceutical drug discovery. Pharm Methods 2:71–75. https://doi.org/10.4103/2229-4708.84436

  4. Avula B, Wang Y-H, Khan IA (2012) Quantitative determination of curcuminoids from the roots of Curcuma longa, Curcuma species and dietary supplements using an UPLC-UV-MS method. J Chromatogr Sep Tech 03:3–8. https://doi.org/10.4172/2157-7064.1000120

  5. Baghel US, Nagar AS, Pannu M et al (2017) HPLC and HPTLC methods for simultaneous estimation of quercetin and curcumin in polyherbal formulation. Indian J Pharm Sci 79:197–203. https://doi.org/10.4172/pharmaceutical-sciences.1000217

  6. Bian W, Wang X, Wang Y et al (2018) Boron and nitrogen co-doped carbon dots as a sensitive fluorescent probe for the detection of curcumin. Luminescence 33:174–180. https://doi.org/10.1002/bio.3390

  7. Chen W, Fan-Havard P, Yee LD et al (2012) A liquid chromatography–tandem mass spectrometric method for quantification of curcumin-O-glucuronide and curcumin in human plasma. J Chromatogr B 900:89–93. https://doi.org/10.1016/J.JCHROMB.2012.05.026

  8. Cheng J, Weijun K, Yun L et al (2010) Development and validation of UPLC method for quality control of Curcuma longa Linn.: fast simultaneous quantitation of three curcuminoids. J Pharm Biomed Anal 53:43–49. https://doi.org/10.1016/j.jpba.2010.03.021

  9. Daneshgar P, Norouzi P, Moosavi-Movahedi AA et al (2009) Fabrication of carbon nanotube and dysprosium nanowire modified electrodes as a sensor for determination of curcumin. J Appl Electrochem 39:1983–1992. https://doi.org/10.1007/s10800-009-9908-0

  10. Dave HN, Mashru RC, Thakkar AR (2007) Simultaneous determination of salbutamol sulphate, bromhexine hydrochloride and etofylline in pharmaceutical formulations with the use of four rapid derivative spectrophotometric methods. Anal Chim Acta 597:113–120. https://doi.org/10.1016/j.aca.2007.06.035

  11. Dey N, Devasena T, Sivalingam T (2018) A Comparative evaluation of graphene oxide based materials for Electrochemical non-enzymatic sensing of curcumin. Mater Res Express 5:025406. https://doi.org/10.1088/2053-1591/aaaa78

  12. Erpina E, Rafi M, Darusman LK et al (2017) Simultaneous quantification of curcuminoids and xanthorrhizol in Curcuma xanthorrhiza by high-performance liquid chromatography. J Liq Chromatogr Relat Technol 40:635–639. https://doi.org/10.1080/10826076.2017.1343729

  13. Gantait A, Barman T, Mukherjee PK (2011) Validated method for estimation of curcumin in turmeric powder. Indian J Tradit Knowl 10:247–250

  14. Green CE, Hibbert SL, Bailey-Shaw YA et al (2008) Extraction, processing, and storage effects on curcuminoids and oleoresin yields from Curcuma longa L. grown in Jamaica. J Agric Food Chem 56:3664–3670. https://doi.org/10.1021/jf073105v

  15. He X-G, Lin L-Z, Lian L-Z, Lindenmaier M (1998) Liquid chromatography–electrospray mass spectrometric analysis of curcuminoids and sesquiterpenoids in turmeric (Curcuma longa). J Chromatogr A 818:127–132. https://doi.org/10.1016/S0021-9673(98)00540-8

  16. Hu Q, Gao L, Rao S et al (2019) Nitrogen and chlorine dual-doped carbon nanodots for determination of curcumin in food matrix via inner filter effect. Food Chem 280:195–202. https://doi.org/10.1016/J.FOODCHEM.2018.12.050

  17. Hwang K-W, Son D, Jo H-W et al (2016) Levels of curcuminoid and essential oil compositions in turmerics (Curcuma longa L.) grown in Korea. Appl Biol Chem 59:209–215. https://doi.org/10.1007/s13765-016-0156-9

  18. Inoue K, Nomura C, Ito S et al (2008) Purification of curcumin, demethoxycurcumin, and bisdemethoxycurcumin by high-speed countercurrent chromatography. J Agric Food Chem 56:9328–9336. https://doi.org/10.1021/jf801815n

  19. Jadhav B-K, Mahadik K-R, Paradkar A-R (2007) Development and validation of improved reversed phase-HPLC method for simultaneous determination of curcumin, demethoxycurcumin and bis-demethoxycurcumin. Chromatographia 65:483–488. https://doi.org/10.1365/s10337-006-0164-8

  20. Janben A, Gole T (1984) Thin-layer chromatographic determination of curcumine (turmeric) in spices. Chromatographia 18:546–549. https://doi.org/10.1007/BF02265692

  21. Jangle RD, Thorat BN (2013) Reversed-phase high-performance liquid chromatography method for analysis of curcuminoids and curcuminoid-loaded liposome formulation. Indian J Pharm Sci 75:60–66

  22. Jayaprakasha GK, Rao LJM, Sakariah KK (2002) Improved HPLC method for the determination of curcumin, demethoxycurcumin, and bisdemethoxycurcumin. J Agric Food Chem 50:3668–3672. https://doi.org/10.1021/jf025506a

  23. Jayaprakasha Jagan Mohan, Rao L, Sakariah KK (2005) Chemistry and biological activities of C. longa. Trends Food Sci Technol 16:533–548. https://doi.org/10.1016/j.tifs.2005.08.006

  24. Jerkovich AD, Mellors JS, Thompson JW, Jorgenson JW (2005) Linear velocity surge caused by mobile-phase compression as a source of band broadening in isocratic ultrahigh-pressure liquid chromatography. Anal Chem 77:6292–6299. https://doi.org/10.1021/ac0504924

  25. Jia S, Du Z, Song C et al (2017) Identification and characterization of curcuminoids in turmeric using ultra-high performance liquid chromatography-quadrupole time of flight tandem mass spectrometry. J Chromatogr A 1521:110–122. https://doi.org/10.1016/j.chroma.2017.09.032

  26. Jiang H, Somogyi Á, Jacobsen NE et al (2006a) Analysis of curcuminoids by positive and negative electrospray ionization and tandem mass spectrometry. Rapid Commun Mass Spectrom 20:1001–1012. https://doi.org/10.1002/rcm.2401

  27. Jiang H, Timmermann BN, Gang DR (2006b) Use of liquid chromatography–electrospray ionization tandem mass spectrometry to identify diarylheptanoids in turmeric (Curcuma longa L.) rhizome. J Chromatogr A 1111:21–31. https://doi.org/10.1016/J.CHROMA.2006.01.103

  28. Ju J, Chen W (2014) Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe(III) in aqueous media. Biosens Bioelectron 58:219–225. https://doi.org/10.1016/J.BIOS.2014.02.061

  29. Jupille TH, Perry JA (1977) High-performance thin-layer chromatography: a review of principles, practice, and potential. C R C Crit Rev Anal Chem 6:325–359. https://doi.org/10.1080/10408347708542695

  30. Kadam PV, Bhingare CL, Nikam RY, Pawar SA (2013) Development and validation of UV Spectrophotometric method for the estimation of curcumin in cream formulation. Pharm Methods 4:43–45. https://doi.org/10.1016/j.phme.2013.08.002

  31. Kar S, Tudu B, Bag AK, Bandyopadhyay R (2018) Application of near-infrared spectroscopy for the detection of metanil yellow in turmeric powder. Food Anal Methods 11:1291–1302. https://doi.org/10.1007/s12161-017-1106-9

  32. Kasemsumran S, Apiwatanapiwat W, Suttiwijitpukdee N et al (2014) Evaluation of Fourier transform-near infraredspectroscopic measurements for the quantification of curcumin in turmeric herbal medicines. J Near Infrared Spectrosc 22:113–120. https://doi.org/10.1255/jnirs.1103

  33. Khurana A, Ho C-T (1988) High performance liquid chromatographic analysis of curcuminoids and their photo-oxidative decomposition compounds in Curcuma longa L. J Liq Chromatogr 11:2295–2304. https://doi.org/10.1080/01483918808067200

  34. Kim Y-J, Lee HJ, Shin H-S, Shin Y (2014) Near-infrared reflectance spectroscopy as a rapid and non-destructive analysis tool for curcuminoids in turmeric. Phytochem Anal 25:445–452. https://doi.org/10.1002/pca.2514

  35. Kotan G, Kardaş F, Yokuş ÖA et al (2016) A novel determination of curcumin via Ru@Au nanoparticle decorated nitrogen and sulfur-functionalized reduced graphene oxide nanomaterials. Anal Methods 8:401–408. https://doi.org/10.1039/C5AY02950C

  36. Kunati SR, Yang S, William BM, Xu Y (2018) An LC–MS/MS method for simultaneous determination of curcumin, curcumin glucuronide and curcumin sulfate in a phase II clinical trial. J Pharm Biomed Anal 156:189–198. https://doi.org/10.1016/J.JPBA.2018.04.034

  37. Lechtenberg M, Quandt B, Nahrstedt A (2004) Quantitative determination of curcuminoids in curcuma rhizomes and rapid differentiation ofCurcuma domestica Val. and Curcuma xanthorrhiza Roxb. by capillary electrophoresis. Phytochem Anal 15:152–158. https://doi.org/10.1002/pca.759

  38. Lee JH, Choung M-G (2011) Determination of curcuminoid colouring principles in commercial foods by HPLC. Food Chem 124:1217–1222. https://doi.org/10.1016/J.FOODCHEM.2010.07.049

  39. Li R, Xiang C, Ye M et al (2011) Qualitative and quantitative analysis of curcuminoids in herbal medicines derived from Curcuma species. Food Chem 126:1890–1895. https://doi.org/10.1016/j.foodchem.2010.12.014

  40. Li F, Liu R, Yang F et al (2014a) Determination of three curcuminoids in Curcuma longa by microemulsion electrokinetic chromatography with protective effects on the analytes. Anal Methods 6:2566–2571. https://doi.org/10.1039/C3AY42106F

  41. Li H-X, Zhang H-L, Zhang N et al (2014b) Isolation of three curcuminoids for stability and simultaneous determination of only using one single standard substance in turmeric colour principles by HPLC with ternary gradient system. LWT Food Sci Technol 57:446–451. https://doi.org/10.1016/J.LWT.2013.11.020

  42. Li K, Li Y, Yang L et al (2014c) The electrochemical characterization of curcumin and its selective detection in Curcuma using a graphene-modified electrode. Anal Methods 6:7801–7808. https://doi.org/10.1039/C4AY01492H

  43. Liu Y, Gong X, Dong W et al (2018a) Nitrogen and phosphorus dual-doped carbon dots as a label-free sensor for Curcumin determination in real sample and cellular imaging. Talanta 183:61–69. https://doi.org/10.1016/J.TALANTA.2018.02.060

  44. Liu Y, Siard M, Adams A et al (2018b) Simultaneous quantification of free curcuminoids and their metabolites in equine plasma by LC-ESI–MS/MS. J Pharm Biomed Anal 154:31–39. https://doi.org/10.1016/j.jpba.2018.03.014

  45. Long Y, Zhang W, Wang F, Chen Z (2014) Simultaneous determination of three curcuminoids in Curcuma longa L. by high performance liquid chromatography coupled with electrochemical detection. J Pharm Anal 4:325–330. https://doi.org/10.1016/J.JPHA.2013.10.002

  46. Lu Y, Xia Y, Liu G et al (2017) A review of methods for detecting melamine in food samples. Crit Rev Anal Chem 47:51–66. https://doi.org/10.1080/10408347.2016.1176889

  47. Malasoni R, Srivastava A, Pandey RR et al (2013) Development and validation of improved HPLC method for the quantitative determination of curcuminoids in herbal medicament. J Sci Ind Res (India) 72:88–91

  48. Maráková K, Mikuš P, Pieštanský J, Havránek E (2011) Determination of curcuminoids in substances and dosage forms by cyclodextrin-mediated capillary electrophoresis with diode array detection. Chem Pap 65:398–405. https://doi.org/10.2478/s11696-011-0043-0

  49. Meng F-C, Zhou Y-Q, Ren D, et al (2018) Turmeric: a review of its chemical composition, quality control, bioactivity, and pharmaceutical application. In: Natural and artificial flavoring agents and food dyes. Elsevier Inc., pp 299–350

  50. Mudge E, Chan M, Venkataraman S, Brown PN (2016) Curcuminoids in turmeric roots and supplements: method optimization and validation. Food Anal Methods 9:1428–1435. https://doi.org/10.1007/s12161-015-0326-0

  51. Naidu MM, Shyamala BN, Manjunatha JR et al (2009) Simple HPLC method for resolution of curcuminoids with antioxidant potential. J Food Sci 74:C312–C318. https://doi.org/10.1111/j.1750-3841.2009.01124.x

  52. Nelson KM, Dahlin JL, Bisson J et al (2017) The essential medicinal chemistry of curcumin. J Med Chem 60:1620–1637. https://doi.org/10.1021/acs.jmedchem.6b00975

  53. Nhujak T, Saisuwan W, Srisa-art M, Petsom A (2006) Microemulsion electrokinetic chromatography for separation and analysis of curcuminoids in turmeric samples. J Sep Sci 29:666–676. https://doi.org/10.1002/jssc.200500333

  54. Osorio-Tobón JF, Carvalho PIN, Barbero GF et al (2016) Fast analysis of curcuminoids from turmeric (Curcuma longa L.) by high-performance liquid chromatography using a fused-core column. Food Chem 200:167–174. https://doi.org/10.1016/J.FOODCHEM.2016.01.021

  55. Paramasivam M, Poi R, Banerjee H, Bandyopadhyay A (2009) High-performance thin layer chromatographic method for quantitative determination of curcuminoids in Curcuma longa germplasm. Food Chem 113:640–644. https://doi.org/10.1016/j.foodchem.2008.07.051

  56. Pathania V, Gupta AP, Singh B (2006) Improved HPTLC method for determination of curcuminoids from Curcuma longa. J Liq Chromatogr Relat Technol 29:877–887. https://doi.org/10.1080/10826070500531417

  57. Peng J, Nong K, Cen L (2012) Electropolymerization of Acid chrome blue K on glassy carbon electrode for the determination of curcumin. J Chinese Chem Soc 59:1415–1420. https://doi.org/10.1002/jccs.201200085

  58. Peram MR, Jalalpure SS, Joshi SA et al (2017) Single robust RP-HPLC analytical method for quantification of curcuminoids in commercial turmeric products, Ayurvedic medicines, and nanovesicular systems. J Liq Chromatogr Relat Technol 40:487–498. https://doi.org/10.1080/10826076.2017.1329742

  59. Phattanawasin P, Sotanaphun U, Sriphong L (2009) Validated TLC-image analysis method for simultaneous quantification of curcuminoids in Curcuma longa. Chromatographia 69:397–400. https://doi.org/10.1365/s10337-008-0893-y

  60. Pitt JJ (2009) Principles and applications of liquid chromatography–mass spectrometry in clinical biochemistry. Clin Biochem Rev 30:19–34

  61. Prasad S, Tyagi AK, Aggarwal BB (2014) Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 46:2–18. https://doi.org/10.4143/crt.2014.46.1.2

  62. Priyadarsini KI (2014) The chemistry of curcumin: from extraction to therapeutic agent. Molecules 19:20091–20112. https://doi.org/10.3390/molecules191220091

  63. Pundarikakshudu K, Dave HN (2010) Simultaneous determination of curcumin and berberine in their pure form and from the combined extracts of Curcuma longa and Berberis aristata. Int J Appl Sci Eng 8:19–26

  64. Rao DS, Sekhara NC, Satyanarayana MN, Srinivasan M (1970) Effect of curcumin on serum and liver cholesterol levels in the rat. J Nutr 100:1307–1315. https://doi.org/10.1093/jn/100.11.1307

  65. Roggo Y, Chalus P, Maurer L et al (2007) A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J Pharm Biomed Anal 44:683–700. https://doi.org/10.1016/J.JPBA.2007.03.023

  66. Rohman A (2012) Mini review analysis of curcuminoids in food and pharmaceutical products. Int Food Res J 19:19–27

  67. Scotter MJ (2009) Synthesis and chemical characterisation of curcuminoid colouring principles for their potential use as HPLC standards for the determination of curcumin colour in foods. LWT Food Sci Technol 42:1345–1351. https://doi.org/10.1016/J.LWT.2009.03.014

  68. Shi Y, Li C, Liu S et al (2015) Facile synthesis of fluorescent carbon dots for determination of curcumin based on fluorescence resonance energy transfer. RSC Adv 5:64790–64796. https://doi.org/10.1039/C5RA13404H

  69. Sotanaphun U, Phattanawasin P, Sriphong L (2009) Application of Scion image software to the simultaneous determination of curcuminoids in turmeric (Curcuma longa). Phytochem Anal 20:19–23. https://doi.org/10.1002/pca.1086

  70. Sun X, Gao C, Cao W et al (2002) Capillary electrophoresis with amperometric detection of curcumin in Chinese herbal medicine pretreated by solid-phase extraction. J Chromatogr A 962:117–125. https://doi.org/10.1016/S0021-9673(02)00509-5

  71. Swinney K, Bornhop DJ (2000) Detection in capillary electrophoresis. Electrophoresis. Wiley-Blackwell, Hoboken, pp 1239–1250

  72. Syed HK, Bin Liew K, Loh GOK, Peh KK (2015) Stability indicating HPLC–UV method for detection of curcumin in Curcuma longa extract and emulsion formulation. Food Chem 170:321–326. https://doi.org/10.1016/J.FOODCHEM.2014.08.066

  73. Taha MN, Krawinkel MB, Morlock GE (2015) High-performance thin-layer chromatography linked with (bio)assays and mass spectrometry—A suited method for discovery and quantification of bioactive components? Exemplarily shown for turmeric and milk thistle extracts. J Chromatogr A 1394:137–147. https://doi.org/10.1016/J.CHROMA.2015.03.029

  74. Taibon J, Sturm S, Seger C et al (2015) Quantitative assessment of destruxins from strawberry and maize in the lower parts per billion range: combination of a QuEChERS-based extraction protocol with a fast and selective UHPLC-QTOF-MS assay. J Agric Food Chem 63:5707–5713. https://doi.org/10.1021/acs.jafc.5b01562

  75. Tan S, Rupasinghe TWT, Tull DL et al (2015) Liquid–liquid extraction and liquid chromatography–mass spectrometry detection of curcuminoids from bacterial culture medium. J Chromatogr B 988:116–120. https://doi.org/10.1016/j.jchromb.2015.02.024

  76. Tanaka K, Kuba Y, Sasaki T, et al (2008) Quantitation of curcuminoids in curcuma rhizome by near-infrared spectroscopic analysis. https://doi.org/10.1021/jf801338e

  77. Taylor SJ, McDowell IJ (1992) Determination of the curcuminoid pigments in turmeric (Curcuma-Domestica Val) by reversed-phase high-performance liquid-chromatography. Chromatographia 34:73–77. https://doi.org/10.1007/bf02290463

  78. Tonnesen HH, Karlsen J (1983) High-performance liquid chromatography of curcumin and related compounds. J Chromatogr A 259:367–371. https://doi.org/10.1016/S0021-9673(01)88022-5

  79. Vijaya Saradhi UVR, Ling Y, Wang J et al (2010) A liquid chromatography–tandem mass spectrometric method for quantification of curcuminoids in cell medium and mouse plasma. J Chromatogr B 878:3045–3051. https://doi.org/10.1016/J.JCHROMB.2010.08.039

  80. Wang F, Wu X, Wang F et al (2006) The sensitive fluorimetric method for the determination of curcumin using the enhancement of mixed micelle. J Fluoresc 16:53–59. https://doi.org/10.1007/s10895-005-0025-0

  81. Watnabe T, Mazumder TK, Yamamoto A et al (2000) Separation and determination of curcuminoids in turmeric samples by miceller electrokinetic chromatography with a high molecular mass surfactant. Nippon SHOKUHIN KAGAKU KOGAKU KAISHI 47:780–786. https://doi.org/10.3136/nskkk.47.780

  82. Wichitnithad W, Jongaroonngamsang N, Pummangura S, Rojsitthisak P (2009) A simple isocratic HPLC method for the simultaneous determination of curcuminoids in commercial turmeric extracts. Phytochem Anal 20:314–319. https://doi.org/10.1002/pca.1129

  83. Wray DM, Batchelor-McAuley C, Compton RG (2012) Selective curcuminoid separation and detection via nickel complexation and adsorptive stripping voltammetry. Electroanalysis 24:2244–2248. https://doi.org/10.1002/elan.201200560

  84. Wu C, Wang W, Quan F et al (2018) Sensitive analysis of curcuminoids via micellar electrokinetic chromatography with laser-induced native fluorescence detection and mixed micelles-induced fluorescence synergism. J Chromatogr A 1564:207–213. https://doi.org/10.1016/j.chroma.2018.06.012

  85. Xu Q, Kuang T, Liu Y et al (2016) Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications. J Mater Chem B 4:7204–7219. https://doi.org/10.1039/C6TB02131J

  86. Zhang SZ, Xie JW, Liu CS (2003) Microenvironmental properties and chiral discrimination abilities of bile salt micelles by fluorescence probe technique. Anal Chem 75:91–97. https://doi.org/10.1021/ac020373d

  87. Zhang J, Jinnai S, Ikeda R et al (2009) A simple HPLC-fluorescence method for quantitation of curcuminoids and its application to turmeric products. Anal Sci 25:385–388. https://doi.org/10.2116/analsci.25.385

  88. Zhang Q, Zhang C, Li Z et al (2015) Nitrogen-doped carbon dots as fluorescent probe for detection of curcumin based on the inner filter effect. RSC Adv 5:95054–95060. https://doi.org/10.1039/C5RA18176C

  89. Zhang D, Ouyang X, Ma J et al (2016) Electrochemical behavior and voltammetric determination of curcumin at electrochemically reduced graphene oxide modified glassy carbon electrode. Electroanalysis 28:749–756. https://doi.org/10.1002/elan.201500494

  90. Ziyatdinova GK, Nizamova AM, Budnikov HC (2012) Voltammetric determination of curcumin in spices. J Anal Chem 67:591–594. https://doi.org/10.1134/S1061934812040132

Download references


The authors appreciate R Sudarshan Reddy (Research Scholar, Agricultural and Food Engineering Department, IIT Kharagpur, India) for providing valuable suggestions.

Author information

Correspondence to Tridib Kumar Goswami.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kotra, V.S.R., Satyabanta, L. & Goswami, T.K. A critical review of analytical methods for determination of curcuminoids in turmeric. J Food Sci Technol 56, 5153–5166 (2019). https://doi.org/10.1007/s13197-019-03986-1

Download citation


  • Turmeric
  • Curcuminoids analysis
  • Analytical methods
  • Quality control
  • Review