Advertisement

Journal of Food Science and Technology

, Volume 56, Issue 11, pp 5128–5137 | Cite as

Isolation of Enterococcus faecium, characterization of its antimicrobial metabolites and viability in probiotic Minas Frescal cheese

  • Liziane Schittler
  • Luana Martins Perin
  • Juliana de Lima Marques
  • Vanessa Lando
  • Svetoslav Dimitrov Todorov
  • Luís Augusto Nero
  • Wladimir Padilha da SilvaEmail author
Original Article
  • 61 Downloads

Abstract

The aim of this study was to isolate Enterococcus faecium from raw milk samples, to characterize its antimicrobial metabolites, and to evaluate its viability in a probiotic Minas Frescal cheese. For this, antagonist activity against Listeria monocytogenes, safety aspects and biochemical, genotypic, and probiotic characteristics of the isolates were evaluated. Minas Frescal cheese was manufactured with the isolate that showed the best characteristics in vitro, and its viability in the product was evaluated. It was observed that of the 478 lactic acid bacteria isolates, only isolate E297 presented antagonist activity, genes encoding for enterocin production and absence of virulence factors. Besides that, E297 presented probiotic characteristics in vitro, and maintained its viability (8.09 log CFU mL−1) for 14 days of cold storage, when it was added to cheese. Therefore, isolate E297 can be considered a promising microorganism for the manufacture of probiotic foods, especially Minas Frescal cheese.

Keywords

Bacteriocin-like substances Biopreservation Enterocin LAB Probiotic food 

Notes

Acknowledgements

This study was financed in part by Coordenação de Aperfeiçoamento Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. The authors would like to thank FAPERGS and CNPq (309101/2016-6) for their financial support for the research.

Compliance with ethical standards

Ethical standards

The article complies with all points of ethical standards.

Supplementary material

13197_2019_3985_MOESM1_ESM.docx (101 kb)
Supplementary material 1 (DOCX 100 kb)

References

  1. Aarestrup FM, Agerso Y, Gerner-Smidt P, Madsen M, Jensen LB (2000) Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn Microbiol Infect Dis 37:127–137CrossRefGoogle Scholar
  2. Angmo K, Kumari A, Savitri, Bhalla TC (2016) Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh. LWT Food Sci Technol 66:428–435CrossRefGoogle Scholar
  3. Arauz LJ, Jozala AF, Mazzola PG, Penna TCV (2009) Nisin biotechnological production and application: a review. Trends Food Sci Technol 20:146–154CrossRefGoogle Scholar
  4. Back D, Mattanna P, Andrades DF, Simões GD, Richards NPS (2013) Probiotic viability of Minas Fresh cheeses with reduced lactose content. Revista do Instituto de Laticínios Cândido Tostes 68:27–35CrossRefGoogle Scholar
  5. Bagci U, Ozmen TS, Temiz A, Ay M (2019) Probiotic characteristics of bacteriocin-producing Enterococcus faecium strains isolated from human milk and colostrum. Folia Microbiol.  https://doi.org/10.1007/s12223-019-00687-2 CrossRefGoogle Scholar
  6. Barbosa J, Gibbs PA, Teixeira P (2010) Virulence factors among enterococci isolated from traditional fermented meat products produced in the North of Portugal. Food Control 21:651–656CrossRefGoogle Scholar
  7. Biavasco F, Foglia G, Paoletti C, Zandri G, Magi G, Guaglianone E, Sundsfjord A, Pruzzo A, Donelli G, Facinelli B (2007) VanA-type enterococci from humans, animals, and food: species distribution, population structure, Tn1546 typing and location, and virulence determinants. Appl Environ Microbiol 73:3307–3319CrossRefGoogle Scholar
  8. Billstrom H, Lund B, Sullivan A, Nord CE (2008) Virulence and antimicrobial resistance in clinical Enterococcus faecium. Int J Antimicrob Agents 32:374–377CrossRefGoogle Scholar
  9. Caggia C, de Angelis M, Pitino I, Pino A, Randazzo CL (2015) Probiotic features of Lactobacillus strains isolated from Ragusano and Pecorino Siciliano cheeses. Food Microbiol 50:109–117CrossRefGoogle Scholar
  10. CLSI (Clinical and Laboratory Standards Institute) (2017) Performance Standards for Antimicrobial Susceptibility Testing; Twenty-seven Informational Supplement, CLSI Document M100-S25. PA, USAGoogle Scholar
  11. Dal Bello B, Rantsiou K, Bellio A, Zeppa G, Ambrosoli R, Civera T, Cocolin L (2010) Microbial ecology of artisanal products from North West of Italy and antimicrobial activity of the autochthonous populations. LWT Food Sci Technol 43:1151–1159CrossRefGoogle Scholar
  12. De Vuyst L, Foulquié-Moreno MR, Revets H (2003) Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. Int J Food Microbiol 84:99–318CrossRefGoogle Scholar
  13. Dutka-Malen S, Evers S, Courvalin P (1995) Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol 33:24–27PubMedPubMedCentralGoogle Scholar
  14. Eaton TJ, Gasson MJ (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67:1628–1635CrossRefGoogle Scholar
  15. FAO/WHO (2001) Evaluation of health and nutritional properties of probiotics in food. Córdoba, Argentina, Food and Agriculture Organization of the United Nations and World Health Organization, pp 1–34Google Scholar
  16. FAO/WHO (2002) Guidelines for the Evaluation of Probiotics in Food. Food and Agriculture Organization of the United Nations. World Health Organization, London, OntarioGoogle Scholar
  17. Fisher K, Phillips C (2009) The ecology, epidemiology and virulence of Enterococcus. Microbiology 155:1749–1757CrossRefGoogle Scholar
  18. Fleming HP, Etchells JL, Costilow RN (1975) Microbial inhibition by an isolate of Pediococcus from cucumber brines. Appl Microbiol 30:1040–1042PubMedPubMedCentralGoogle Scholar
  19. Gomes AC, Buriti FCA, Batista de Souza CH, Fonseca Faria JA, Isay Saad SM (2009) Probiotic cheese: health benefits, technological and stability aspects. Trends Food Sci Technol 20:344–354CrossRefGoogle Scholar
  20. Ilavenil S, Vijayakumar M, Kim DH, ValanArasu M, Park HS, Ravikumar S, Choi KC (2015) Assessment of probiotic, antifungal and cholesterol lowering properties of Pediococcus pentosaceus KCC-23 isolated from Italian ryegrass. J Sci Food Agric 96:593–601CrossRefGoogle Scholar
  21. Ladero V, Fernández M, Calles-Enríquez M, Sánchez-Llana E, Cañedo E, Martín MC (2012) Is the production of the biogenic amines tyramine and putrescine a species-level trait in enterococci? Food Microbiol 30:132–138CrossRefGoogle Scholar
  22. Marco I, Vogel C, Morandin G, Beilke L, Valduga N, Zambiazi E, Martinhago J, Schittler L (2018) Salsichas tipo hot dog: perfil microbiológico, isolamento e caracterização de bactérias ácido láticas (BAL) com potencial antagonista. Revista CSBEA 4:149–162Google Scholar
  23. Martín-Platero AM, Valdivia E, Maqueda M, Martinez-Bueno M (2009) Characterization and safety evaluation of enterococci isolated from Spanish goats’ milk cheeses. Int J Food Microbiol 132:24–32CrossRefGoogle Scholar
  24. Mojgani N, Hussaini F, Vaseji N (2015) Characterization of indigenous Lactobacillus strains for probiotic properties. Jundishapur J Microbiol 8:17523CrossRefGoogle Scholar
  25. Naser SM, Thompson FL, Hoster B, Gevers D, Dawyndt P, Vancanneyt M, Swings J (2005) Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species basead on rpoA and pheS genes. Microbiology 151:2141–2150CrossRefGoogle Scholar
  26. Nunes MM, Caldas ED (2017) Preliminary quantitative microbial risk assessment for Staphylococcus enterotoxins in fresh Minas cheese, a popular food in Brazil. Food Control 73:524–531CrossRefGoogle Scholar
  27. Oh YI, Jung DS (2015) Evaluation of probiotic properties of Lactobacillus and Pediococcus strains isolated from Omegisool, a traditionally fermented millet alcoholic beverage in Korea. LWT Food Sci Technol 63:1–8CrossRefGoogle Scholar
  28. Ounissi H, Courvalin P (1987) Appendix B. Nucleotide sequences of streptococcal genes. In: Ferretti JJ, Curtis R (eds) Streptococcal genetics. American Society for Microbiology, Washington DC, p 275Google Scholar
  29. Özdemir GB, Oryaşin E, Biyik HH, Özteber M, Bozdoğan B (2011) Phenotypic and genotypic characterization of bacteriocins in enterococcal isolates of different sources. Indian J Microbiol 51:182–187CrossRefGoogle Scholar
  30. Patel R, Uhl JIM, Kohner P, Hopkins MK, Cockerill FR (1997) Multiplex PCR detection of vanA, vanB, vanC-1, and vanC-2/3 genes in enterococci. J Clin Microbiol 35:703–707PubMedPubMedCentralGoogle Scholar
  31. Perez RH, Himeno K, Ishibashi N, Masuda Y, Zendo T, Fujita K, Wilaipun P, Leelawatcharamas V, Nakayama J, Sonomoto K (2012) Monitoring of the multiple bacteriocin production by Enterococcus faecium NKR-5-3 through a developed liquid chromatography and mass spectrometry-based quantification system. J Biosci Bioeng 114:490–496CrossRefGoogle Scholar
  32. Prichula J, Zvoboda DDA, Pereira RI, Santestevan NA, Medeiros AW, Motta ADS, Azevedo PA, Giordani AR, Franzzon APG (2013) Perfil de suscetibilidade aos antimicrobianos e diversidade das espécies de enterococos isolados de leite cru de búfalas no Sul do Brasil. Revista Brasileira de Ciência Veterinária 20:104–109CrossRefGoogle Scholar
  33. Renye JA, Somkuti GA, Paul M, Hekken DLV (2009) Characterization of antilisterial bacteriocins produced by Enterococcus faecium and Enterococcus durans isolates from Hispanic-style cheeses. J Ind Microbiol Biotechnol 36:261–268CrossRefGoogle Scholar
  34. Ricciardi A, Blaiotta G, Di Cerbo A, Succi M, Aponte M (2014) Behaviour of lactic acid bacteria populations in Pecorino di Carmasciano cheese samples submitted to environmental conditions prevailing in the gastrointestinal tract: evaluation by means of a polyphasic approach. Int J Food Microbiol 179:64–71CrossRefGoogle Scholar
  35. Rice L, Lakticova V, Carias LL, Rudim S, Hutton R, Marshall SH (2009) Transferable capacity for gastrointestinal colonization in Enterococcus faecium in a mouse model. J Infect Dis 199:342–349CrossRefGoogle Scholar
  36. Rizzotti L, Simeoni D, Cocconcelli P, Gazzola S, Dellaglio F, Torriani S (2005) Contribution of enterococci to the spread of antibiotic resistance in the production chain of swine meat commodities. J Food Prot 68(5):955–965CrossRefGoogle Scholar
  37. Vankerckhoven V, Autgaerden TV, Vael C, Lammens C, Chapelle S, Rossi R, Jabes D, Goossens H (2004) Development of a multiplex PCR for the detection of asa1, gelE, cylA, esp, and hyl genes in enterococci and survey for virulence determinants among european hospital isolates of Enterococcus faecium. J Clin Microbiol 42:4473–4479CrossRefGoogle Scholar
  38. Van de Klundert JAM, Vliegenthart JS (1993) PCR detection of genes for aminoglycoside-modifying enzymes. In: Persing DH, Smith TF, Tenover FC, White TJ (eds) Diagnostic molecular microbiology. American Society for Microbiology, pp 547–552Google Scholar
  39. Vera-Pingitore E, Jimenez ME, Dallagnol A, Belfiore C, Fontana C, Fontana P, Wright A, Vignolo G, Plumed-Ferrer C (2016) Screening and characterization of potential probiotic and starter bacteria for plant fermentations. LWT Food Sci Technol 71:288–294CrossRefGoogle Scholar
  40. Zhou C, Shi L, Ye B, Feng H, Zhang J, Zhang R, Yan X (2016) pheS*, an effective host-genotype-independent counter-selectable marker for marker-free chromosome deletion in Bacillus amyloliquefaciens. Appl Microbiol Biotechnol 101:217–227CrossRefGoogle Scholar
  41. Zommiti M, Cambronel M, Maillot O, Barreau M, Sebei K, Feuiloley M, Ferchichi M, Connil N (2018) Evaluation of probiotic properties and safety of Enterococcus faecium isolated from artisanal Tunisian meat “Dried Ossban”. Front Microbiol 9:1685CrossRefGoogle Scholar
  42. Zou LK, Wang HN, Zeng B, Li JN, Lo XT, Zhang AY, Zhou YS, Yang X, Xu CW, Xia QQ (2011) Erythromycin resistance and virulence genes in Enterococcus faecalis froms wine in China. New Microbiol 34:73–80PubMedGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2019

Authors and Affiliations

  • Liziane Schittler
    • 1
  • Luana Martins Perin
    • 2
  • Juliana de Lima Marques
    • 3
  • Vanessa Lando
    • 1
  • Svetoslav Dimitrov Todorov
    • 2
  • Luís Augusto Nero
    • 2
  • Wladimir Padilha da Silva
    • 3
    • 4
    Email author
  1. 1.Departamento de Engenharia de AlimentosUniversidade do Estado de Santa CatarinaPinhalzinhoBrazil
  2. 2.Departamento de VeterináriaUniversidade Federal de ViçosaViçosaBrazil
  3. 3.Departamento de Ciência e Tecnologia AgroindustrialUniversidade Federal de PelotasPelotasBrazil
  4. 4.Centro de Desenvolvimento Tecnológico – BiotecnologiaUniversidade Federal de PelotasPelotasBrazil

Personalised recommendations