Journal of Food Science and Technology

, Volume 55, Issue 10, pp 4204–4211 | Cite as

The effects of conventional heating on phenolic compounds and antioxidant activities of olive leaves

  • Fahad Al JuhaimiEmail author
  • Mehmet Musa Özcan
  • Nurhan Uslu
  • Kashif Ghafoor
  • Elfadıl E. Babiker
  • Oladipupu Q. Adiamo
  • Omer N. Alsawmahi
Original Article


Phenolic compounds, antioxidant activities and total phenolic contents of leaves from different olive varieties (Gemlik, Kalamata, Yağlık and Sarıulak) were evaluated after conventional drying at different temperatures (50, 60, 70 and 80 °C). The drying process resulted in non-significant effects on olive leaves. The phenolic contents however, varied with drying temperature. The contents of minor total phenolics in Gemlik, Kalamata and Sarıulak leaves were 1457.6, 1899.3 and 2179.8 mg GAE/100 g, respectively when dried at 60 °C. The highest total phenolic reduction (23.2%) was observed in Kalamata leaves after drying at 80 °C. The major phenolic compounds in olive leaves were gallic acid (101.2–439.7 mg/100 g), 3,4-dihydroxybenzoic acid (66.7–460.4 mg/100 g), (+)-catechin (39.2–667.8 mg/100 g), 1,2-dihydroxybenzene (15.8–584.8 mg/100 g) and quercetin (33.1–277.7 mg/100 g). It was observed that olive leaves from different varieties are rich in phenolic compounds which are sensitive to heat and varied with drying temperature.


Olive leave Phenolic compounds Drying Antioxidant activity HPLC 



The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding the Research Group No. (RG-1435-049).

Compliance with ethical standards

Conflict of interest

No potential conflict of interest was reported by the authors.


  1. Abaza L, Taamalli A, Nsir H, Zarrouk M (2015) Olive tree (Olea europeae L.) leaves: importance and advances in the analysis of phenolic compounds. Antioxidants 4:682–698CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ahmad-Qasem MH, Barrajón-Catalán E, Micol V, Mulet A, García-Pérez JV (2013) Influence of freezing and dehydration of olive leaves (var. Serrana) on extract composition and antioxidant potential. Food Res Int 50:189–196CrossRefGoogle Scholar
  3. Ansari M, Kazemipourb M, Fathib S (2011) Development of a simple green extraction procedure and HPLC method for determination of oleuropein inolive leaf extract applied to a multi-source comparative study. J Iran Chem Soc 8:38–47CrossRefGoogle Scholar
  4. Boudhrioua N, Bahloul N, Slimen IB, Kechaou N (2009) Comparison on the total phenol contents and the color of fresh and infrared dried olive leaves. Ind Crops Prod 29:412–419CrossRefGoogle Scholar
  5. Ghafoor K, Al-Juhaimi FY, Choi YH (2012) Supercritical fluid extraction of phenolic compounds and antioxidants from grape (Vitis labrusca B.) seeds. Plant Foods Hum Nutr 2012(67):407–414CrossRefGoogle Scholar
  6. Guinda A, Castellano JM, Santos-Lozano JM, Delgado-Hervas T, Gutierrez-Adanez P, Rada M (2015) Determination of major bioactive compounds from olive leaf. LWT Food Sci Technol 64:431–438CrossRefGoogle Scholar
  7. Kamran M, Hamlin AS, Scott CJ, Obied HK (2015) Drying at high temperature for a short time maximizes the recovery of olive leaf biophenols. Ind Crops Prod 78:29–38CrossRefGoogle Scholar
  8. Lee SK, Mbwambo ZH, Chung HS, Luyengi L, Games EJC, Mehta RG (1998) Evaluation of the antioxidant potential of natural products. Comb Chem High Throughput Screen 1:35–46PubMedGoogle Scholar
  9. Lee OH, Lee BY, Lee J, Lee HB, Son JY, Park CS, Shetty K, Kim YC (2009) Assessment of phenolics-enriched extract and fractions of olive leaves and their antioxidant activities. Biores Technol 100:6107–6113CrossRefGoogle Scholar
  10. Parmar N, Singh N, Kaur A, Thakur S (2017) Comparison of color, anti-nutritional factors, minerals, phenolic profile and protein digestibility between hard-to-cook and easy-to-cook grains from different kidney bean (Phaseolus vulgaris) accessions. J Food Sci Technol 54(4):1023–1034CrossRefPubMedPubMedCentralGoogle Scholar
  11. Püskülcü H, İkiz F (1989) Introduction to Statistic. Bilgehan Press, Bornova İzmir, p 333 (in Turkish) Google Scholar
  12. Rahmaniana N, Jafaric SM, Wani TA (2015) Bioactive profile, dehydration, extraction and application of the bioactive components of olive leaves. Trends Food Sci Technol 42:150–172CrossRefGoogle Scholar
  13. Ranalli A, Contento S, Lucera L, Di Febo M, Marchegiani D, Di Fonzo V (2005) Factors affecting the contents of iridoid oleuropein in olive leaves (Olea europaea L.). J Agric Food Chem 54:434–440CrossRefGoogle Scholar
  14. Romani A, Mulas S, Heimler D (2017) Polyphenols and secoiridoids in raw material (Olea europaea L. leaves) and commercial food supplements. Eur Food Res Technol 243:429–435CrossRefGoogle Scholar
  15. Ryan D, Antolovich M, Herlt T, Prenzler PD, Lavee S, Robards K (2002) Identification of phenolic compounds in tissues of the novel olive cultivarhardy’s mammoth. J Agric Food Chem 50:6716–6724CrossRefPubMedGoogle Scholar
  16. Silva S, Gomes L, Leitão F, Coelho AV, Vilas Boas L (2006) Phenolic compounds and antioxidant activity of Olea europaea L. fruits and leaves. Food Sci Technol Int 12(5):385–396CrossRefGoogle Scholar
  17. Tabera J, Guinda A, Ruiz-Rodríguez A, Señoráns JF, Ibáñez E, Albi T (2004) Countercurrent supercritical fluid extraction and fractionation of high-added-value compounds from a hexane extract of olive leaves. J Agric Food Chem 52:4774–4779CrossRefPubMedGoogle Scholar
  18. Talhaoui N, Gomez-Caravana AM, Leon L, De la Rosa R, Segura-Carretero A, Fernandez-Gutierrez A (2014) Determination of phenolic compounds of ‘Sikitita’ olive leaves by HPLC-DAD-TOF-Ms. Comparison with its parents ‘Arbequina’ and ‘Picual’ olive leaves. LWT Food Sci Technol 58:28–34CrossRefGoogle Scholar
  19. Tayoub G, Sulaiman H, Hassan AH, Alorfi M (2012) Determination of oleuropein in leaves and fruits of some Syrian olive varieties. Int J Med Aromat Plants 2:428–433Google Scholar
  20. Yoo KM, Lee KW, Park JB, Lee HJ, Hwang IK (2004) Variation in major antioxidants and total antioxidant activity of Yuzu (Citrus junos SiebexTanaka) during maturation and between cultivars. J Agric Food Chem 52:5907–5913CrossRefPubMedGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2018

Authors and Affiliations

  • Fahad Al Juhaimi
    • 1
    Email author
  • Mehmet Musa Özcan
    • 2
  • Nurhan Uslu
    • 2
  • Kashif Ghafoor
    • 1
  • Elfadıl E. Babiker
    • 1
  • Oladipupu Q. Adiamo
    • 1
  • Omer N. Alsawmahi
    • 1
  1. 1.Department of Food Science and Nutrition, College of Food and Agricultural SciencesKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Food Engineering, Faculty of AgricultureSelcuk UniversityKonyaTurkey

Personalised recommendations