Journal of Food Science and Technology

, Volume 55, Issue 10, pp 3971–3978 | Cite as

MIR spectroscopy as alternative method for further confirmation of foodborne pathogens Salmonella spp. and Listeria monocytogenes

  • Catarina Moreirinha
  • Joana Trindade
  • Jorge A. Saraiva
  • Adelaide Almeida
  • Ivonne Delgadillo
Original Article


Listeriosis and Salmonellosis are two of the most common foodborne diseases. Consequently, an early and accurate detection of Listeria monocytogenes and Salmonella spp. in food products is a critical concern of public health policies. Therefore, it is of great interest to develop rapid, simple, and inexpensive alternatives for pathogen detection in food products. In this study, mid-infrared spectroscopy has been successfully used to confirm Listeria species and the presence of Salmonella isolated from food samples. This methodology showed to be very sensitive and could be a rapid alternative to detect these important pathogens, allowing to obtain results in a few minutes after previous growth in selective media, avoiding the confirmation procedures that delay the achievement of the results for up to 2 days.


Infrared spectroscopy (IR) Principal component analysis (PCA) Foodborne bacteria Listeria monocytogenes Salmonella spp 



We would like to thank Fundação para a Ciência e a Tecnologia (FCT, Portugal), the European Union, QREN, FEDER, COMPETE, for Funding the Organic Chemistry Research Unit (QOPNA) (Project PEst-C/QUI/UI0062/2013; FCOMP-01-0124-FEDER-037296). Catarina Moreirinha was financed by FCT (SFRH/BD/71512/2010).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aydin M, Carter-Conger J, Gao N et al (2018) Molecular identification of common Salmonella serovars using multiplex DNA sensor-based suspension array. Anal Bioanal Chem 410:2637–2646. CrossRefPubMedGoogle Scholar
  2. Benetti TM, Monteiro CLB, Beux MR, Abrahão WM (2013) Enzyme-linked imunoassays for the detection of Listeria sp. and Salmonella sp. in sausage: a comparison with conventional methods. Braz J Microbiol 44:791–794. CrossRefPubMedGoogle Scholar
  3. Bernardi G, Abrahao W, Benetti T et al (2015) Evaluation of the detection methods used for investigation of Listeria and Listeria monocytogenes. J Food Nutr Disord. CrossRefGoogle Scholar
  4. Brandily ML, Monbet V, Bureau B et al (2011) Identification of foodborne pathogens within food matrices by IR spectroscopy. Sens Actuators B Chem 160:202–206. CrossRefGoogle Scholar
  5. Brenner FW, Villar RG, Angulo FJ et al (2000) Salmonella nomenclature. J Clin Microbiol 38:2465–2467Google Scholar
  6. Coleman DJ, Nye KJ, Chick KE, Gagg CM (1995) A comparison of immunomagnetic separation plus enrichment with conventional Salmonella culture in the examination of raw sausages. Lett Appl Microbiol 21:249–251. CrossRefPubMedGoogle Scholar
  7. Das RS, Agrawal YK (2011) Raman spectroscopy: recent advancements, techniques and applications. Vib Spectrosc 57:163–176. CrossRefGoogle Scholar
  8. Davis R, Mauer LJ (2010) Fourier tansform infrared (FT-IR) spectroscopy: a rapid tool for detection and analysis of foodborne pathogenic bacteria. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex, BadajozGoogle Scholar
  9. Doyle M, Buchanan R (2013) Food microbiology: fundamentals and frontiers, 4th edn. ASM Press, Washington, DCCrossRefGoogle Scholar
  10. Ellis DI, Brewster VL, Dunn WB et al (2012) Fingerprinting food: current technologies for the detection of food adulteration and contamination. Chem Soc Rev 41:5706. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ferraro J, Krischnan K (2012) Practical Fourier transform infrared spectroscopy: industrial and laboratory chemical analysis. Academic Press Inc, CaliforniaGoogle Scholar
  12. Gracias KS, McKillip JL (2004) A review of conventional detection and enumeration methods for pathogenic bacteria in food. Can J Microbiol 50:883–890. CrossRefPubMedGoogle Scholar
  13. Harvey RR, Heimann KE, Burnworth L et al (2017) International outbreak of multiple Salmonella serotype infections linked to sprouted chia seed powder—USA and Canada, 2013–2014. Epidemiol Infect 145:1535–1544. CrossRefPubMedGoogle Scholar
  14. Heiman KE, Garalde VB, Gronostaj M et al (2016) Multistate outbreak of listeriosis caused by imported cheese and evidence of cross-contamination of other cheeses, USA, 2012. Epidemiol Infect 144:2698–2708. CrossRefPubMedGoogle Scholar
  15. Hoelzer K, Moreno Switt AI, Wiedmann M (2011) Animal contact as a source of human non-typhoidal salmonellosis. Vet Res 42:34. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hu P, Zhou G, Xu X et al (2009) Characterization of the predominant spoilage bacteria in sliced vacuum-packed cooked ham based on 16S rDNA-DGGE. Food Control 20:99–104. CrossRefGoogle Scholar
  17. ISO 11290–1 (1996) Microbiology of food and animal feeding stuffs - Horizontal method for the detection and enumeration of Listeria monocytogenes. International Standards Organization, GenevaGoogle Scholar
  18. ISO 6579 (2002) Microbiology of food and animal feeding stuffs: horizontal method for the detection of Salmonella spp. International Standards Organisation, GenevaGoogle Scholar
  19. Kammies T-L, Manley M, Gouws PA, Williams PJ (2016) Differentiation of foodborne bacteria using NIR hyperspectral imaging and multivariate data analysis. Appl Microbiol Biotechnol 100:9305–9320. CrossRefPubMedGoogle Scholar
  20. Lasch P, Naumann D (2006) Infrared spectroscopy in microbiology. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 1–32Google Scholar
  21. Lefier D, Hirst D, Holt C, Williams AG (2006) Effect of sampling procedure and strain variation in Listeria monocytogenes on the discrimination of species in the genus Listeria by Fourier transform infrared spectroscopy and canonical variates analysis. FEMS Microbiol Lett 147:45–50. CrossRefGoogle Scholar
  22. Maddocks S, Olma T, Chen S (2002) Comparison of CHROMagar Salmonella medium and xylose-lysine-desoxycholate and Salmonella-Shigella agars for isolation of Salmonella strains from stool samples. J Clin Microbiol 40:2999–3003. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Moreirinha C, Almeida A, Saraiva JA, Delgadillo I (2016) High-pressure processing effects on foodborne bacteria by mid-infrared spectroscopy analysis. LWT Food Sci Technol 73:212–218. CrossRefGoogle Scholar
  24. Orsini F, Ami D, Villa AM et al (2000) FT-IR microspectroscopy for microbological studies. J Microbiol Methods 42:17–27. CrossRefPubMedGoogle Scholar
  25. Pine L, Malcolm GB, Brooks JB, Daneshvar MI (1989) Physiological studies on the growth and utilization of sugars by Listeria species. Can J Microbiol 35:245–254. CrossRefPubMedGoogle Scholar
  26. Pusztahelyi T, Szabó J, Dombrádi Z et al (2016) Foodborne Listeria monocytogenes: a real challenge in quality control. Scientifica (Cairo) 2016:5768526. CrossRefGoogle Scholar
  27. Rebuffo CA, Schmitt J, Wenning M et al (2006) Reliable and rapid identification of Listeria monocytogenes and Listeria species by artificial neural network-based Fourier transform infrared spectroscopy. Appl Environ Microbiol 72:994–1000. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Rocourt J, Buchrieser C (2007) Listeria, Listeriosis, and food safety, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  29. Romanolo KF, Gorski L, Wang S, Lauzon CR (2015) Rapid identification and classification of Listeria spp. and serotype assignment of Listeria monocytogenes using Fourier transform-infrared spectroscopy and artificial neural network analysis. PLoS ONE 10:e0143425. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sahar A, Dufour É (2014) Use of Fourier transform-infrared spectroscopy to predict spoilage bacteria on aerobically stored chicken breast fillets. LWT Food Sci Technol 56:315–320. CrossRefGoogle Scholar
  31. Sivakesava S, Irudayaraj J, DebRoy C (2004) Differentiation of microorganisms by FTIR-ATR and NIR spectroscopy. Trans ASAE 47:951–957. CrossRefGoogle Scholar
  32. Su X, Zhang J, Shi W et al (2016) Molecular characterization and antimicrobial susceptibility of Listeria monocytogenes isolated from foods and humans. Food Control 70:96–102. CrossRefGoogle Scholar
  33. Tindall B, Grimont P, Garrity G, Euzéby J (2005) Nomenclature and taxonomy of the genus Salmonella. Int J Syst Evol Microbiol 55:521–524. CrossRefPubMedGoogle Scholar
  34. Vieira A, Silva YJ, Cunha  et al (2012) Phage therapy to control multidrug-resistant Pseudomonas aeruginosa skin infections: in vitro and ex vivo experiments. Eur J Clin Microbiol Infect Dis 31:3241–3249. CrossRefPubMedGoogle Scholar
  35. Warburton DW, Bowen B, Konkle A et al (1994) A comparison of six different plating media used in the isolation of Salmonella. Int J Food Microbiol 22:277–289. CrossRefPubMedGoogle Scholar
  36. Yoshida C, Gurnik S, Ahmad A et al (2016) Evaluation of molecular methods for identification of Salmonella serovars. J Clin Microbiol 54:1992–1998. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2018

Authors and Affiliations

  1. 1.Departament of Biology, CESAMUniversity of AveiroAveiroPortugal
  2. 2.Departament of Chemistry, QOPNAUniversity of AveiroAveiroPortugal
  3. 3.Labinter - Laboratório Alimentar, LdaCovilhãPortugal

Personalised recommendations