Advertisement

Mass transfer modeling of the antioxidant extraction of roselle flower (Hibiscus sabdariffa)

  • C. E. Ochoa-VelascoEmail author
  • I. I. Ruiz-LópezEmail author
Original Article
  • 19 Downloads

Abstract

The aim of this study was to analyze the equilibrium and dynamic periods for mass transfer during the antioxidant solid–liquid extraction of dry roselle flower (Hibiscus sabdariffa). Extraction kinetics for total phenolic compounds (TPC), total flavonoids (TFL) and total antioxidant capacity (TAC) were obtained at different temperatures (50, 60, 70 or 80 °C) and solvent-to-product mass ratios (100:1, 200:1 or 300:1 g/g) under stirring (220–230 rpm). An analytical solution for unsteady-state mass transfer based on Fick’s second law of diffusion was used to mathematically describe solid–liquid extraction curves and for the simultaneous estimation of diffusion coefficients and the final amount of extracted bioactive compounds, which were further related to experimental conditions by a second order model. The amount of extracted bioactive compounds at equilibrium were in the ranges of 30.8–89.8 g GAE/kg d.m. for TPC (0.154–0.373 g GAE/L extract), 40.0–131.6 g catechin/kg d.m. for TFC (0.269–0.559 g catechin/L extract) and 37.5–227.0 g trolox/kg d.m. for TAC (0.346–0.865 g trolox/L extract). On the other hand, diffusion coefficients for TPC, TFC and TAC were in the ranges of 0.72–2.66 × 10−11, 0.25–2.37 × 10−11 and 1.19–5.79 × 10−11 m2/s, respectively.

Keywords

Bioactive compounds Diffusion coefficient Equilibrium point Solid–liquid extraction 

Abbreviations

GAE

Gallic acid equivalents

TPC

Total phenolic compounds

TFL

Total flavonoids

TAC

Total antioxidant capacity

List of symbols

\( A \)

Denotes product surface

\( C \)

Concentration of a given component in solution (g/l solution)

\( D \)

Apparent diffusivity (m2/s)

\( K \)

Equilibrium partition coefficient (kg solid/kg solution)

\( k_{c} \)

Convective mass transfer coefficient (m/s)

\( L \)

Characteristic length for diffusion (m)

\( {\mathbf{n}} \)

Normal unit vector

\( R \)

Solvent-to-product mass ratio (kg/kg)

\( X,\bar{X} \)

Mass fraction of a given component in product (kg/kg product): local and average, respectively

\( Y \)

Mass fraction of a given component in solution (kg/kg solution)

\( t \)

Time (s)

\( T \)

Temperature (°C)

\( V \)

Denotes product volume

\( z \)

Axial coordinate (m)

\( \Delta X \)

Extracted amount of a given component in product (kg/kg product)

Subscripts

\( e \)

At equilibrium

\( i \)

At the solid–liquid interphase

\( l \)

For liquid

\( s \)

For solid

Greek letters

\( \rho \)

Density (kg/m3)

\( \psi ,\varPsi \)

Dimensionless concentration: local and average, respectively

Notes

References

  1. Alara OR, Abdurahman NH, Olalere OA (2018) Optimization of microwave-assisted extraction of flavonoids and antioxidants from Vernonia amygdalina leaf using response surface methodology. Food Bioprod Process 107:36–48CrossRefGoogle Scholar
  2. Castillo-Santos K, Ruiz-López II, Rodríguez-Jiménez GC, Carrillo-Ahumada J, García-Alvarado MA (2017) Analysis of mass transfer equations during solid–liquid extraction and its application for vanilla extraction kinetics modeling. J Food Eng 192:6–44CrossRefGoogle Scholar
  3. Cissé M, Bohuon P, Sambe F, Kane C, Sakho M, Dornier M (2012) Aqueous extraction of anthocyanins from Hibiscus sabdariffa: experimental kinetics and modeling. J Food Eng 109:16–21CrossRefGoogle Scholar
  4. Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  5. Fernández-Arroyo S, Rodríguez-Medina I, Beltrán-Debón R, Pasini F, Joven J, Micol V, Segura-Carretero A, Fernández-Gutiérrez A (2011) Quantification of the polyphenolic fraction and in vitro antioxidant and in vivo anti-hyperlipemic activities of Hibiscus sabdariffa aqueous extract. Food Res Int 44:1490–1495CrossRefGoogle Scholar
  6. Garcia-Perez JV, García-Alvarado MA, Carcel JA, Mulet A (2010) Extraction kinetics modeling of antioxidants from grape stalk (Vitis vinifera var. Bobal): influence of drying conditions. J Food Eng 101:49–58CrossRefGoogle Scholar
  7. Goula AM (2013) Ultrasound-assisted extraction of pomegranate seed oil-kinetic modeling. J Food Eng 117:492–498CrossRefGoogle Scholar
  8. Hernández-Carranza P, Ávila-Sosa R, Guerrero-Beltrán JA, Navarro-Cruz AR, Corona-Jiménez E, Ochoa-Velasco CE (2016) Optimization of antioxidant compounds extraction from fruit by-products: apple pomace, orange and banana peel. J Food Process Pres 40:103–115CrossRefGoogle Scholar
  9. Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856CrossRefGoogle Scholar
  10. Jokić S, Velić D, Bilić M, Bucić-Kojić A, Planinić M, Tomas S (2010) Modelling of the process of solid–liquid extraction of total polyphenols from soybeans. Czech J Food Sci 28:206–212CrossRefGoogle Scholar
  11. Krishnan KR, Sivarajan M, Babuskin S, Archana G, Babu PAS, Sukumar M (2013) Kinetic modeling of spice extraction from S. aromaticum and C. cassia. J Food Eng 117:326–332CrossRefGoogle Scholar
  12. Krishnan KR, Babu PAS, Babuskin S, Sivarajan M, Sukumar M (2015) Modeling of the kinetics of antioxidant extraction from Origanum vulgare and Brassica nigra. Chem Eng Commun 202:1577–1585CrossRefGoogle Scholar
  13. Linares AR, Hase SL, Vergara ML, Resnik SL (2010) Modeling yerba mate aqueous extraction kinetics: influence of temperature. J Food Eng 97:471–477CrossRefGoogle Scholar
  14. Ochoa-Velasco CE, Salazar-González C, Cid-Ortega S, Guerrero-Beltrán JA (2017) Antioxidant characteristics of extracts of Hibiscus sabdariffa calyces encapsulated with mesquite gum. J Food Sci Technol 54:1747–1756CrossRefGoogle Scholar
  15. Pacheco-Angulo H, Herman-Lara E, García-Alvarado MA, Ruiz-López II (2016) Mass transfer modeling in osmotic dehydration: equilibrium characteristics and process dynamics under variable solution concentration and convective boundary. Food Bioprod Process 97:88–99CrossRefGoogle Scholar
  16. Pinelo M, Sineiro J, Núñez MJ (2006) Mass transfer during continuous solid–liquid extraction of antioxidants from grape byproducts. J Food Eng 77:57–63CrossRefGoogle Scholar
  17. Qu W, Pan Z, Ma H (2010) Extraction modeling and activities of antioxidants from pomegranate marc. J Food Eng 99:16–23CrossRefGoogle Scholar
  18. Riaz G, Chopra R (2018) A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L. Biomed Pharmacother 102:575–586CrossRefGoogle Scholar
  19. Sánchez RJ, Mateo CM, Fernández MB, Nolasco SM (2017) Bidimensional modeling applied to oil extraction kinetics of microwave-pretreated canola seeds. J Food Eng 192:28–35CrossRefGoogle Scholar
  20. Winitsorn A, Douglas PL, Douglas S, Pongampai S, Teppaitoon W (2008) Modeling the extraction of valuable substances from natural plants using solid–liquid extraction. Chem Eng Commun 195:1457–1464CrossRefGoogle Scholar
  21. Xu DP, Zheng J, Zhou Y, Li Y, Li S, Li HB (2017) Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: optimization and comparison with conventional methods. Food Chem 217:552–559CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2019

Authors and Affiliations

  1. 1.Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de PueblaPueblaMexico
  2. 2.Facultad de Ingeniería QuímicaBenemérita Universidad Autónoma de PueblaPueblaMexico

Personalised recommendations