Journal of Food Science and Technology

, Volume 54, Issue 10, pp 3050–3057 | Cite as

Acorn (Quercus spp.) as a novel source of oleic acid and tocopherols for livestock and humans: discrimination of selected species from Mediterranean forest

  • T. Akcan
  • R. Gökçe
  • M. Asensio
  • M. Estévez
  • D. Morcuende
Original Article


The aim of the present work was to characterization and compare acorns from selected Quercus spp. from the Mediterranean forest in Spain, namely, Portuguese oak (QF, Quercus faginea Lam.), Cork oak (QS, Quercus suber L.), Pyrenean oak (QP, Quercus pyrenaica Wild), Kermes oak (QC, Quercus coccifera L.), Holm oak (QB, Quercus ilex L. subsp. ballota [Desf.]). All physicochemical attributes varied significantly between species. Fat contents ranged from 1.30 to 4.70 g 100 g−1 fresh matter. The most abundant fatty acids were oleic (62.44, 56.25, 57.46, 48.02, 65.83%), followed by linoleic (16.42, 20.73, 21.30, 25.38, 14.17%) and palmitic (11.69, 14.27, 12.17, 16.22, 12.28) acids in QF, QS, QP, QC and QB species, respectively. The tocopherol content was high in the range of 31.83–45.25 mg kg−1, and γ-tocopherol constituted 67–78% of total tocopherols. Only an effect of the location on γ-tocopherol content in QB was observed. The present results show the potential of different species of acorn to be used as agricultural and food resources and that geographical location plays a secondary role.


Fatty acid profile Physicochemical properties Quercus spp. Tocopherols 


  1. Afzal-Rafii Z, Dodd RS, Pelleau Y (1992) Mediterranean evergreen oak diversity: morphological and chemical variation of acorns. Can J Bot 70:1459–1466. doi: 10.1139/b92-184 CrossRefGoogle Scholar
  2. Al-Rousan WM, Ajo RY, Al-Ismail KM, Attlee A, Shaker RR, Osaili TM (2013) Characterization of acorn fruit oils extracted from selected mediterranean Quercus species. Grasas Aceites 64:554–560. doi: 10.3989/gya.023313 CrossRefGoogle Scholar
  3. Cañellas I, Roig S, San Miguel A (2003) Caracterización y evolución anual del valor bromatológico de las quercineas mediterráneas. In: Robles AB, Ramos EM, Morales MC, de Simón E, González Rebollar JL, Boza J (eds) Consejería de Agricultura y Pesca. Junta de Andalucía, Madrid, pp 455–460Google Scholar
  4. Cantos E, Espin JC, Lopez-Bote C, de la Hoz L, Ordonez JA, Tomas-Barberan FA (2003) Phenolic compounds and fatty acids from acorns (Quercus spp.), the main dietary constituent of free-ranged Iberian pigs. J Agric Food Chem 51:6248–6255. doi: 10.1021/jf030216v CrossRefGoogle Scholar
  5. Cava R, Ruiz J, Lopez-Bote C, Martin L, Garcia C, Ventanas J, Antequera T (1997) Influence of finishing diet on fatty acid profiles of intramuscular lipids, triglycerides and phospholipids in muscles of the Iberian pig. Meat Sci 45:263–270. doi: 10.1016/S0309-1740(96)00102-7 CrossRefGoogle Scholar
  6. Cava R, Ruiz J, Ventanas J, Antequera T (1999) Oxidative and lipolytic changes during ripening of Iberian hams as affected by feeding regime: extensive feeding and alpha-tocopheryl acetate supplementation. Meat Sci 52:165–172. doi: 10.1016/s0309-1740(98)00164-8 CrossRefGoogle Scholar
  7. de la Hoz L, López MO, Cambero MI, Martin-Alvarez PJ, Gallardo E, Ordoñez JA (1993) Fatty acid of Iberian pig liver as affected by diet. Archiv für Lebensmittelhygiene 44:102–103Google Scholar
  8. de la Hoz L, Lopez MO, Hierro E, Cambero MI, Ordonez JA (1996) Efecto de la dieta de cerdos ibericos sobre la composicion en acidos grasos de la grasa intramuscular e intermuscular de jamones/Effect of diet on the fatty acid composition of intramuscular and intermuscular fat in Iberian pig cured hams. Food Sci Technol Int 2:391–397. doi: 10.1177/108201329600200605 CrossRefGoogle Scholar
  9. Duthie GG, Gonzalez BM, Morrice PC, Arthur JR (1991) Inhibitory effects of isomers of tocopherol on lipid peroxidation of microsomes from vitamin E-deficient rats. Free Radic Res Commun 15:35–40. doi: 10.3109/10715769109049123 CrossRefGoogle Scholar
  10. Ensminger LG (2008) The association of official analytical chemists. Clin Toxicol 9:471. doi: 10.3109/15563657608988149 CrossRefGoogle Scholar
  11. Estévez M, Luna C (2016) Dietary protein oxidation: a silent threat to human health? Crit Rev Food Sci Nutr. doi: 10.1080/10408398.2016.1165182 Google Scholar
  12. Fernández I, Gómez A, Moreno P, De Pedro E, Diaz E, López FJ, Sánchez L (2004) Variabilidad de las caracteristicas de las bellotas en el Valle de Los Pedroches (Cordoba). Pastos y Ganadería extensiva. XLIV Reunión Científica de la SEEP Salamanca, pp 317–322Google Scholar
  13. Ferreira-Dias S, Valente DG, Abreu JMF (2007) Pattern recognition of acorns from different Quercus species based on oil content and fatty acid profile. Grasas Aceites 54:384–391. doi: 10.3989/gya.2003.v54.i4.224 Google Scholar
  14. Gossert AD, Hinniger A, Gutmann S, Jahnke W, Strauss A, Fernandez C (2011) A simple protocol for amino acid type selective isotope labeling in insect cells with improved yields and high reproducibility. J Biomol NMR 51:449–456. doi: 10.1007/s10858-011-9570-9 CrossRefGoogle Scholar
  15. Lemcke-Norojärvi M, Kamal-Eldin A, Appelqvist L-Å, Dimberg LH, Öhrvall M, Vessby B (2001) Corn and sesame oils increase serum γ-tocopherol concentrations in healthy Swedish women. J Nutr 131:1195–1201Google Scholar
  16. León-Camacho M, Viera-Alcaide I, Vicario IM (2004) Acorn (Quercus spp.) fruit lipids: saponifiable and unsaponifiable fractions: a detailed study. J Am Oil Chem Soc 81:447–453. doi: 10.1007/s11746-004-0921-8 CrossRefGoogle Scholar
  17. Lopez-Bote CJ (1998) Sustained utilization of the Iberian pig breed. Meat Sci 49:S17–S27CrossRefGoogle Scholar
  18. Maguire LS, O’Sullivan SM, Galvin K, O’Connor TP, O’Brien NM (2004) Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut. Int J Food Sci Nutr 55:171–178. doi: 10.1080/09637480410001725175 CrossRefGoogle Scholar
  19. Martín L, Córdoba JJ, Ventanas J, Antequera T (1999) Changes in intramuscular lipids during ripening of Iberian dry-cured ham. Meat Sci 51:129–134. doi: 10.1016/s0309-1740(98)00109-0 CrossRefGoogle Scholar
  20. Ordonez JA, Lopez MO, Hierro E, Cambero MI, de la Hoz L (1996) Efecto de la dieta de cerdos ibericos sobre la composicion en acidos grasos del tejido adiposo y muscular/Effect of diet on the fatty acid composition of adipose and muscular tissue in Iberian pigs. Food Sci Technol Int 2:383–390. doi: 10.1177/108201329600200604 CrossRefGoogle Scholar
  21. Perez-Palacios T, Ruiz J, Tejeda JF, Antequera T (2009) Subcutaneous and intramuscular lipid traits as tools for classifying Iberian pigs as a function of their feeding background. Meat Sci 81:632–640. doi: 10.1016/j.meatsci.2008.10.022 CrossRefGoogle Scholar
  22. Pulido FJ, Díaz M (2016) Regeneration of a Mediterranean oak: a whole-cycle approach. Ecoscience 12:92–102. doi: 10.2980/i1195-6860-12-1-92.1 CrossRefGoogle Scholar
  23. Rabrenovic B, Dimic E, Maksimovic M (2011) Determination of fatty acid and tocopherol compositions and the oxidative stability of Walnut (Juglans regia L.) Cultivars Grown in Serbia. Czech J Food Sci 29:74–78Google Scholar
  24. Rakić S, Povrenović D, Tešević V, Simić M, Maletić R (2006) Oak acorn, polyphenols and antioxidant activity in functional food. J Food Eng 74:416–423. doi: 10.1016/j.jfoodeng.2005.03.057 CrossRefGoogle Scholar
  25. Regueiro JAG, Gibert J, Díaz I (1994) Determination of neutral lipids from subcutaneous fat of cured ham by capillary gas chromatography and liquid chromatography. J Chromatogr 667:225–233. doi: 10.1016/0021-9673(94)89071-4 CrossRefGoogle Scholar
  26. Rodriguez-Carpena JG, Morcuende D, Estevez M (2012) Avocado, sunflower and olive oils as replacers of pork back-fat in burger patties: effect on lipid composition, oxidative stability and quality traits. Meat Sci 90:106–115. doi: 10.1016/j.meatsci.2011.06.007 CrossRefGoogle Scholar
  27. Rodriguez-Estévez V, Martínez AG, Moreno CM, Muñoz JMP, Castro AGG, Rodríguez-Estévez V (2008) Dimensiones y características nutritivas de las bellotas de los Quercus de la dehesa. Arch Zootec 57:1–12Google Scholar
  28. Sales-Campos H, Souza PR, Peghini BC, da Silva JS, Cardoso CR (2013) An overview of the modulatory effects of oleic acid in health and disease. Mini Rev Med Chem 13:201–210. doi: 10.2174/1389557511313020003
  29. Sandler SR, Karo W (1992) Acetals and ketals. In: Sourcebook of advanced organic laboratory preparations. Elsevier. doi: 10.1016/B978-0-08-092553-0.50038-8
  30. Soladoye OP, Juárez ML, Aalhus JL, Shand P, Estévez M (2015) Protein oxidation in processed meat: mechanisms and potential implications on human health. Compr Rev Food Sci F 14:106–122. doi: 10.1111/1541-4337.12127 CrossRefGoogle Scholar
  31. Sork VL, Bramble J, Sexton O (1993) Ecology of mast-fruiting in three species of North American deciduous oaks. Ecology 74:528–541. doi: 10.2307/1939313 CrossRefGoogle Scholar
  32. Tejerina D, García-Torres S, Cabeza de Vaca M, Vázquez FM, Cava R (2011) Acorns (Quercus rotundifolia Lam.) and grass as natural sources of antioxidants and fatty acids in the “montanera” feeding of Iberian pig: intra- and inter-annual variations. Food Chem 124:997–1004. doi: 10.1016/j.foodchem.2010.07.058 CrossRefGoogle Scholar
  33. Ventanas S, Ventanas J, Ruiz J, Estévez M, Pandalai SG (2005) Iberian pigs for the development of high-quality cured products. Recent Res Dev Agric Food Chem 6:27–53Google Scholar
  34. Ventanas S, Ventanas J, Tovar J, Garcia C, Estevez M (2007) Extensive feeding versus oleic acid and tocopherol enriched mixed diets for the production of Iberian dry-cured hams: effect on chemical composition, oxidative status and sensory traits. Meat Sci 77:246–256. doi: 10.1016/j.meatsci.2007.03.010 CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2017

Authors and Affiliations

  1. 1.Department of Food Engineering, Faculty of EngineeringPamukkale UniversityDenizliTurkey
  2. 2.SIPAUniversidad de ExtremaduraCáceresSpain
  3. 3.IPROCAR Research Institute, TECAL Research GroupUniversidad de ExtremaduraCáceresSpain

Personalised recommendations