Advertisement

Measurement of ripening of raspberries (Rubus idaeus L) by near infrared and colorimetric imaging techniques

  • 347 Accesses

  • 6 Citations

Abstract

This work includes the evaluation of 168 samples of raspberries ‘Glen Lyon’, representing whole maturation period, by colorimetric and near infrared imaging techniques, as well as the quantification of total phenols, total anthocyanins and antioxidant activity by chemical methods. Samples showed significant differences depending on the maturation stage using CIELAB colour parameters and total anthocyanins content. The application of partial least squares regression allowed predicting the chemical features from image analysis data, with coefficients of determination (R2) up to 0.75. The best prediction for total anthocyanins including colorimetric data was observed. The proposed methodology can be used as a reference method for assessing important quality attributes of raspberries. Moreover, it is useful, rapid and accurate automatic inspection method.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. doi:10.1006/abio.1996.0292

  2. Berns RS, Billmeyer FW, Saltzman M (2000) Billmeyer and Saltzman’s principles of color technology, 3rd edn. Wiley, New York

  3. Brosnan T, Sun D-W (2004) Improving quality inspection of food products by computer vision—a review. J Food Eng 61:3–16. doi:10.1016/S0260-8774(03)00183-3

  4. Clark CJ, McGlone VA, Requejo C et al (2003) Dry matter determination in “Hass” avocado by NIR spectroscopy. Postharvest Biol Technol 29:301–308. doi:10.1016/S0925-5214(03)00046-2

  5. Dobson P, Graham J, Stewart D et al (2012) Over-seasons analysis of quantitative trait loci affecting phenolic content and antioxidant capacity in raspberry. J Agric Food Chem 60:5360–5366. doi:10.1021/jf3005178

  6. Downey G, Kelly JD (2004) Detection and quantification of apple adulteration in diluted and sulfited strawberry and raspberry purées using visible and near-infrared spectroscopy. J Agric Food Chem 52:204–209. doi:10.1021/jf035019a

  7. ElMasry G, Wang N, ElSayed A, Ngadi M (2007) Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. J Food Eng 81:98–107. doi:10.1016/j.jfoodeng.2006.10.016

  8. Esquerre C, Gowen AA, O’Donnell CP, Downey G (2009) Initial studies on the quantitation of bruise damage and freshness in mushrooms using visible-near-infrared spectroscopy. J Agric Food Chem 57:1903–1907. doi:10.1021/jf803090c

  9. Fernández-Vázquez R, Stinco CM, Meléndez-Martínez AJ et al (2011) Visual and instrumental evaluation of orange juice color: a consumers’ preference study. J Sens Stud 26:436–444. doi:10.1111/j.1745-459X.2011.00360.x

  10. Gordillo B, Rodríguez-Pulido FJ, Escudero-Gilete ML et al (2012) Comprehensive colorimetric study of anthocyanic copigmentation in model solutions. Effects of pH and molar ratio. J Agric Food Chem 60:2896–2905. doi:10.1021/jf2046202

  11. Hutchings J (2002) 14 Calibrated colour imaging analysis of food. In: MacDougall DB (ed) Colour in food: improving quality. CRC Press, Cambridge

  12. Jennings DL (2002) Breeding primocane-fruiting raspberries at medway fruits—progress and prospects. Acta Hort 85–89:2002. doi:10.17660/ActaHortic.2002.585.10

  13. Kalt W, Forney CF, Martin A, Prior RL (1999) Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. J Agric Food Chem 47:4638–4644. doi:10.1021/jf990266t

  14. Kemsley EK, Holland JK, Defernez M, Wilson RH (1996) Detection of adulteration of raspberry purees using infrared spectroscopy and chemometrics. J Agric Food Chem 44:3864–3870. doi:10.1021/jf960089l

  15. León K, Mery D, Pedreschi F, León J (2006) Color measurement in L∗ a∗ b∗ units from RGB digital images. Food Res Int 39:1084–1091. doi:10.1016/j.foodres.2006.03.006

  16. Lin P, Chen Y, He Y (2009) Identification of geographical origin of olive oil using visible and near-infrared spectroscopy technique combined with chemometrics. Food Bioprocess Technol 5:235–242. doi:10.1007/s11947-009-0302-z

  17. Luo MR, Cui GH, Li C (2001) British Patent entitled apparatus and method for measuring colour (DigiEye System), Derby University Enterprises Limited

  18. Manganaris GA, Goulas V, Vicente AR, Terry LA (2014) Berry antioxidants: small fruits providing large benefits. J Sci Food Agric 94:825–833. doi:10.1002/jsfa.6432

  19. Nicolaï BM, Beullens K, Bobelyn E et al (2007) Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biol Technol 46:99–118. doi:10.1016/j.postharvbio.2007.06.024

  20. Nogales-Bueno J, Hernández-Hierro JM, Rodríguez-Pulido FJ, Heredia FJ (2014) Determination of technological maturity of grapes and total phenolic compounds of grape skins in red and white cultivars during ripening by near infrared hyperspectral image: a preliminary approach. Food Chem 152:586–591. doi:10.1016/j.foodchem.2013.12.030

  21. Osborne BG, Fearn T, Hindle PT, Osborne BG (1993) Practical NIR spectroscopy with applications in food and beverage analysis, 2nd edn. Longman Scientific & Technical, Wiley, Harlow, New York

  22. Pantelidis GE, Vasilakakis M, Manganaris GA, Diamantidis G (2007) Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem 102:777–783. doi:10.1016/j.foodchem.2006.06.021

  23. Piljac-Žegarac J, Šamec D (2011) Antioxidant stability of small fruits in postharvest storage at room and refrigerator temperatures. Food Res Int 44:345–350. doi:10.1016/j.foodres.2010.09.039

  24. Pojić MM, Mastilović JS (2012) Near infrared spectroscopy—advanced analytical tool in wheat breeding, trade, and processing. Food Bioprocess Technol 6:330–352. doi:10.1007/s11947-012-0917-3

  25. Pulido R, Bravo L, Saura-Calixto F (2000) Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem 48:3396–3402. doi:10.1021/jf9913458

  26. Rodríguez-Pulido FJ, Gordillo B, Lourdes González-Miret M, Heredia FJ (2013) Analysis of food appearance properties by computer vision applying ellipsoids to colour data. Comput Electron Agric 99:108–115. doi:10.1016/j.compag.2013.08.027

  27. Rodríguez-Pulido FJ, Hernández-Hierro JM, Nogales-Bueno J et al (2014) A novel method for evaluating flavanols in grape seeds by near infrared hyperspectral imaging. Talanta 122:145–150. doi:10.1016/j.talanta.2014.01.044

  28. Sariburun E, Şahin S, Demir C et al (2010) Phenolic content and antioxidant activity of raspberry and blackberry cultivars. J Food Sci 75:C328–C335. doi:10.1111/j.1750-3841.2010.01571.x

  29. Saura-Calixto F, Goñi I (2006) Antioxidant capacity of the Spanish Mediterranean diet. Food Chem 94:442–447. doi:10.1016/j.foodchem.2004.11.033

  30. Seeram NP, Lee R, Scheuller HS, Heber D (2006) Identification of phenolic compounds in strawberries by liquid chromatography electrospray ionization mass spectroscopy. Food Chem 97:1–11. doi:10.1016/j.foodchem.2005.02.047

  31. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

  32. Sun D-W (2004) Computer vision—an objective, rapid and non-contact quality evaluation tool for the food industry. J Food Eng 61:1–2. doi:10.1016/S0260-8774(03)00182-1

  33. Valous NA, Mendoza F, Sun D-W, Allen P (2009) Colour calibration of a laboratory computer vision system for quality evaluation of pre-sliced hams. Meat Sci 81:132–141. doi:10.1016/j.meatsci.2008.07.009

  34. Williams P (2001) Variables affecting near-infrared reflectance spectroscopic analysis. In: Norris KH, American Association of Cereal Chemists (eds) Near-infrared technology in the agricultural and food industries, 2nd ed. American Association of Cereal Chemists, St. Paul, pp 143–167

  35. Williams P, Geladi P, Fox G, Manley M (2009) Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis. Anal Chim Acta 653:121–130. doi:10.1016/j.aca.2009.09.005

  36. Wrolstad RE, Durst RW, Lee J (2005) Tracking color and pigment changes in anthocyanin products. Trends Food Sci Technol 16:423–428. doi:10.1016/j.tifs.2005.03.019

Download references

Acknowledgements

This work was supported by Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (PE11-AGR-7843). Moreover, the authors want to thank Surexport Cía. Agrícola S.L. for supplying the samples and collaborate with the Color y Calidad de Alimentos research group. Francisco J. Rodríguez-Pulido also thanks VPPI-Universidad de Sevilla for a postdoctoral grant. Finally, we are indebted to the staff of Biology Service (SGI, Universidad de Sevilla) for the technical assistance.

Author information

Correspondence to M. Lourdes González-Miret.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 9836 kb)

Supplementary material 1 (MPG 9836 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Pulido, F.J., Gil-Vicente, M., Gordillo, B. et al. Measurement of ripening of raspberries (Rubus idaeus L) by near infrared and colorimetric imaging techniques. J Food Sci Technol 54, 2797–2803 (2017) doi:10.1007/s13197-017-2716-3

Download citation

Keywords

  • Raspberry ‘Glen Lyon’ (Rubus idaeus L)
  • Image analysis
  • Hyperspectral image analysis
  • Phenolics
  • Partial least squares regression