Advertisement

Journal of Food Science and Technology

, Volume 54, Issue 7, pp 2030–2040 | Cite as

Levels and formation of α-dicarbonyl compounds in beverages and the preventive effects of flavonoids

  • Chen Wang
  • Yongling Lu
  • Qiju Huang
  • Tiesong Zheng
  • Shengmin Sang
  • Lishuang LvEmail author
Original Article
  • 290 Downloads

Abstract

Methylglyoxal (MGO) and glyoxal (GO), α-dicarbonyl compounds found in the Maillard reaction, progressively and irreversibly modify proteins. Beverages are an exogenous source of α-dicarbonyl compounds and may potentially increase MGO and GO levels in vivo. Using GC-FID method, we detected the MGO and GO contents of 86 beverages in Chinese supermarkets. The highest MGO and GO 587.5 µg/100 mL and 716.7 µg/100 mL respectively found in soyamilk and coffee. Herbal beverages, which contained bioactive components, had lower average levels of MGO (48.1 µg/100 mL) and GO (25.9 µg/100 mL). A box-and-whisker plot was used to display variation of the same group drinks, and comparing distributions between six different groups. It was further discovered that fat, protein and flavonoids, in addition to sweeteners, had notable effects on the formation of MGO and GO in soybean milk. The result of LC/MS indicated that quercetin could prevent the formation of MGO by trapping MGO to form the mono-MGO and di-MGO adducts during soybean milk manufacturing.

Graphical Abstract

Keywords

α-Dicarbonyl compounds Methylglyoxal Glyoxal Beverages Soy milk 

Notes

Acknowledgements

This work was supported by funding from the National Natural Science Foundation of China (Grant No. 31571783) to L. Lv.

Compliance with ethics standards

Conflict of interest

There is no conflict of interest of any author.

Human and animal rights

This article does not contain any studies with human or animal subjects.

Supplementary material

13197_2017_2639_MOESM1_ESM.tif (62 kb)
Supplemental 1. (Figure) Gas chromatogram of the derived MGO and GO detected by FID. Column is an HP-5 MS (5%-Phenyl)-methylpolysiloxane silica capillary (30 m × 0.32 mm id, film thickness 0.25 μm; Peaks: (1) solvent, (2) GO, (3) MGO, and (4) DMGO (TIFF 61 kb)
13197_2017_2639_MOESM2_ESM.pdf (119 kb)
Supplementary material 2 (PDF 119 kb)
13197_2017_2639_MOESM3_ESM.pdf (84 kb)
Supplementary material 3 (PDF 83 kb)

References

  1. Arribas-Lorenzo G, Morales FJ (2010) Analysis, distribution, and dietary exposure of glyoxal and methylglyoxal in cookies and their relationship with other heat-induced contaminants. J Agric Food Chem 58:2966–2972. doi: 10.1021/jf902815p CrossRefGoogle Scholar
  2. Barros A, Rodrigues J, Almeida P, Oliva-Teles M (1999) Determination of glyoxal, methylglyoxal, and diacetyl in selected beer and wine, by HPLC with UV spectrophotometric detection, after derivatization with o-phenylenediamine. J Liq Chromatogr Relat Technol 22:2061–2069. doi: 10.1081/JLC-100101786 CrossRefGoogle Scholar
  3. Breyer V, Frischmann M, Bidmon C, Schemm A, Schiebel K, Pischetsrieder M (2008) Analysis and biological relevance of advanced glycation end-products of DNA in eukaryotic cells. FEBS J 275:914–925. doi: 10.1111/j.1742-4658.2008.06255.x CrossRefGoogle Scholar
  4. Daglia M, Papetti A, Aceti C, Sordelli B, Spini V, Gazzani G (2007) Isolation and determination of α-dicarbonyl compounds by RP-HPLC-DAD in green and roasted coffee. J Agric Food Chem 55:8877–8882. doi: 10.1021/jf071917l CrossRefGoogle Scholar
  5. De Revel G, Bertrand A (1993) A method for the detection of carbonyl compounds in wine: glyoxal and methylglyoxal. J Sci Food Agric 61:267–272. doi: 10.1002/jsfa.2740610221 CrossRefGoogle Scholar
  6. Degen J, Hellwig M, Henle T (2012) 1,2-Dicarbonyl compounds in commonly consumed foods. J Agric Food Chem 60:7071–7079. doi: 10.1021/jf301306g CrossRefGoogle Scholar
  7. Frischmann M, Bidmon C, Angerer J, Pischetsrieder M (2005) Identification of DNA adducts of methylglyoxal. Chem Res Toxicol 18:1586–1592. doi: 10.1021/tx0501278 CrossRefGoogle Scholar
  8. Frye EB, Degenhardt TP, Thorpe SR, Baynes JW (1998) Role of the Maillard reaction in aging of tissue proteins advanced glycation end product-dependent increase in imidazolium cross-links in human lens proteins. J Biol Chem 273:18714–18719. doi: 10.1074/jbc.273.30.18714 CrossRefGoogle Scholar
  9. Gensberger S, Glomb MA, Pischetsrieder M (2013) Analysis of sugar degradation products with α-dicarbonyl structure in carbonated soft drinks by UHPLC-DAD-MS/MS. J Agric Food Chem 61:10238–10245. doi: 10.1021/jf3048466 CrossRefGoogle Scholar
  10. Gugliucci A, Bastos DHM, Schulze J, Souza MFF (2009) Caffeic and chlorogenic acids in Ilex paraguariensis extracts are the main inhibitors of AGE generation by methylglyoxal in model proteins. Fitoterapia 80:339–344. doi: 10.1016/j.fitote.2009.04.007 CrossRefGoogle Scholar
  11. Lange JN, Wood KD, Knight J, Assimos DG, Holmes RP (2012) Glyoxal formation and its role in endogenous oxalate synthesis. Adv Urol 2012:1–5. doi: 10.1155/2012/819202 CrossRefGoogle Scholar
  12. Lee HK, Seo I, Suh DJ, Lee HJ, Park HT (2009) A novel mechanism of methylglyoxal cytotoxicity in neuroglial cells. J Neurochem 108:273–284. doi: 10.1111/j.1471-4159.2008.05764.x CrossRefGoogle Scholar
  13. Li X, Zheng T, Sang S, Lv L (2014) Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal. J Agric Food Chem 62:12152–12158. doi: 10.1021/jf504132x CrossRefGoogle Scholar
  14. Lo TWC, Westwood ME, McLellan AC, Selwood T, Thornalley PJ (1994) Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin. J Biol Chem 269:32299–32305Google Scholar
  15. Lo C-Y, Li S, Wang Y, Tan D, Pan M-H, Sang S, Ho C-T (2008) Reactive dicarbonyl compounds and 5-(hydroxymethyl)-2-furfural in carbonated beverages containing high fructose corn syrup. Food Chem 107:1099–1105. doi: 10.1016/j.foodchem.2007.09.028 CrossRefGoogle Scholar
  16. Lo CY, Hsiao WT, Chen XY (2011) Efficiency of trapping methylglyoxal by phenols and phenolic acids. J Food Sci 76:H90–H96. doi: 10.1111/j.1750-3841.2011.02067.x CrossRefGoogle Scholar
  17. Lv L, Shao X, Chen H, Ho C-T, Sang S (2011) Genistein inhibits advanced glycation end product formation by trapping methylglyoxal. Chem Res Toxicol 24:579–586. doi: 10.1021/tx100457h CrossRefGoogle Scholar
  18. Oelschlaegel S, Gruner M, Wang P-N, Boettcher A, Koelling-Speer I, Speer K (2012) Classification and characterization of manuka honeys based on phenolic compounds and methylglyoxal. J Agric Food Chem 60:7229–7237. doi: 10.1021/jf300888q CrossRefGoogle Scholar
  19. Pamplona R (2011) Advanced lipoxidation end-products. Chem Biol Interact 192:14–20. doi: 10.1016/j.cbi.2011.01.007 CrossRefGoogle Scholar
  20. Poulsen MW et al (2013) Advanced glycation endproducts in food and their effects on health. Food Chem Toxicol 60:10–37. doi: 10.1016/j.fct.2013.06.052 CrossRefGoogle Scholar
  21. Revel Gd, Pripis-Nicolau L, Barbe JC, Bertrand A (2000) The detection of α-dicarbonyl compounds in wine by formation of quinoxaline derivatives. J Sci Food Agric 80:102–108. doi: 10.1002/(SICI)1097-0010(20000101)80:1<102:AID-JSFA493>3.0.CO;2 CrossRefGoogle Scholar
  22. Sang S, Shao X, Bai N, Lo C-Y, Yang CS, Ho C-T (2007) Tea polyphenol (–)-epigallocatechin-3-gallate: a new trapping agent of reactive dicarbonyl species. Chem Res Toxicol 20:1862–1870. doi: 10.1021/tx700190s CrossRefGoogle Scholar
  23. Shangari N, O’Brien PJ (2004) The cytotoxic mechanism of glyoxal involves oxidative stress. Biochem Pharmacol 68:1433–1442. doi: 10.1016/j.bcp.2004.06.013 CrossRefGoogle Scholar
  24. Shao X, Bai N, He K, Ho C-T, Yang CS, Sang S (2008) Apple polyphenols, phloretin and phloridzin: new trapping agents of reactive dicarbonyl species. Chem Res Toxicol 21:2042–2050. doi: 10.1021/tx800227v CrossRefGoogle Scholar
  25. Shao X, Chen H, Zhu Y, Sedighi R, Ho C-T, Sang S (2014) Essential structural requirements and additive effects for flavonoids to scavenge methylglyoxal. J Agric Food Chem 62:3202–3210. doi: 10.1021/jf500204s CrossRefGoogle Scholar
  26. Sheader EA, Benson RS, Best L (2001) Cytotoxic action of methylglyoxal on insulin-secreting cells. Biochem Pharmacol 61:1381–1386. doi: 10.3109/10715762.2013.815348 CrossRefGoogle Scholar
  27. Tan D, Wang Y, Lo C-Y, Sang S, Ho C-T (2008) Methylglyoxal: its presence in beverages and potential scavengers. Ann N Y Acad Sci 1126:72–75. doi: 10.1196/annals.1433.027 CrossRefGoogle Scholar
  28. Vistoli G, De Maddis D, Cipak A, Zarkovic N, Carini M, Aldini G (2013) Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic Res 47:3–27. doi: 10.3109/10715762.2013.815348 CrossRefGoogle Scholar
  29. Weerawatanakorn M (2013) Dicarbonyl compounds and sugar contents of Thai commercial beverages. J Sci Technol 35:631–639Google Scholar
  30. White JS (2008) Straight talk about high-fructose corn syrup: what it is and what it ain’t. Am J Clin Nutr 88:1716S–1721S. doi: 10.3945/ajcn.2008.25825B CrossRefGoogle Scholar
  31. Yamaguchi M, Ishida J, Xuan ZX, Nakamura A, Yoshitake T (1994) Determination of glyoxal, methylglyoxal, diacethyl, and 2,3-pentanedione in fermented foods by high-performance liquid chromatography with fluorescence detection. J Liq Chromatogr 17:203–211. doi: 10.1080/10826079408013445 CrossRefGoogle Scholar
  32. Yin H, Porter NA (2005) New insights regarding the autoxidation of polyunsaturated fatty acids. Antioxid Redox Signal 7:170–184. doi: 10.1089/ars.2005.7.170 CrossRefGoogle Scholar
  33. Zhang G, Huang G, Xiao L, Mitchell AE (2011) Determination of advanced glycation endproducts by LC-MS/MS in raw and roasted almonds (Prunus dulcis). J Agric Food Chem 59:12037–12046. doi: 10.1021/jf202515k CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2017

Authors and Affiliations

  • Chen Wang
    • 1
  • Yongling Lu
    • 1
  • Qiju Huang
    • 1
  • Tiesong Zheng
    • 1
  • Shengmin Sang
    • 2
  • Lishuang Lv
    • 1
    Email author
  1. 1.Department of Food Science and TechnologyNanjing Normal UniversityNanjingPeople’s Republic of China
  2. 2.Center for Excellence in Post-Harvest TechnologiesNorth Carolina Agricultural and Technical State UniversityKannapolisUSA

Personalised recommendations