Advertisement

Journal of Food Science and Technology

, Volume 53, Issue 7, pp 2943–2956 | Cite as

Modified atmosphere packaging and post-packaging irradiation of Rumex induratus leaves: a comparative study of postharvest quality changes

  • José Pinela
  • João C. M. Barreira
  • Lillian Barros
  • Sandra Cabo Verde
  • Amilcar L. Antonio
  • M. Beatriz P. P. Oliveira
  • Ana Maria Carvalho
  • Isabel C. F. R. Ferreira
Original Article

Abstract

The effects of conventional and inert-gas enriched atmospheres, as well as those caused by different γ-irradiation doses, on buckler sorrel (Rumex induratus) leaves quality were evaluated and compared after 12 days of storage at 4 °C. The green colour of the abaxial surface of the leaves was relatively stable, as well as the carbohydrates content and the calorific value. The storage time decreased the amounts of fructose, glucose, trehalose, α-tocopherol, and β-tocopherol and increased the levels of total organic acids and δ-tocopherol. The total tocopherols content was higher in air-packaged non-irradiated leaves, antioxidant compounds that may have contributed to the preservation of polyunsaturated fatty acids (PUFA). Some antioxidant properties were also favoured during storage. It was found that the overall postharvest quality of buckler sorrel leaves is better maintained with the argon-enriched atmospheres, while the 6 kGy dose was a suitable option to preserve PUF+A during cold storage. This study highlights the suitability of the applied postharvest treatments and the interest to include buckler sorrel leaves in contemporary diets.

Keywords

Rumex induratus Buckler sorrel Modified atmosphere packaging Gamma irradiation Cold storage Postharvest quality 

Notes

Acknowledgments

The authors are grateful to PRODER research project no. 53514, AROMAP, for financial support of the work and to the Foundation for Science and Technology (FCT, Portugal) for financial support to CIMO (PEst-OE/AGR/UI0690/2014), REQUIMTE (PEst-C/EQB/LA0006/2014), C2TN (RECI/AAG-TEC/0400/2012), and for the grants SFRH/BD/92994/2013, SFRH/BPD/72802/2010 and SFRH/BPD/107855/2015.

References

  1. AOAC (2005) Official methods of analysis of AOAC international, 18th edn. AOAC International, GaithersburgGoogle Scholar
  2. Baysal T, Demirdöven A (2007) Lipoxygenase in fruits and vegetables: a review. Enzyme Microb Technol 40:491–496. doi: 10.1016/j.enzmictec.2006.11.025 CrossRefGoogle Scholar
  3. Carvalho AM (2010) Plantas y sabiduría popular del Parque Natural de Montesinho. Un estudio etnobotánico en Portugal. Biblioteca de Ciencias no. 35. Consejo Superior de Investigaciones Científicas, Madrid, EspañaGoogle Scholar
  4. Char C, Silveira AC, Inestroza-Lizardo C, Hinojosa A, Machuca A, Escalona VH (2012) Effect of noble gas-enriched atmospheres on the overall quality of ready-to-eat arugula salads. Postharvest Biol Technol 73:50–55. doi: 10.1016/j.postharvbio.2012.05.010 CrossRefGoogle Scholar
  5. Cheng A, Wan F, Xu T, Du F, Wang W, Zhu Q (2011) Effect of irradiation and storage time on lipid oxidation of chilled pork. Radiat Phys Chem 80:475–480. doi: 10.1016/j.radphyschem.2010.10.003 CrossRefGoogle Scholar
  6. Choi DS, Park SH, Choi SR, Kim JS, Chun HH (2014) The combined effects of ultraviolet-C irradiation and modified atmosphere packaging for inactivating Salmonella enterica serovar Typhimurium and extending the shelf life of cherry tomatoes during cold storage. Food Packag Shelf Life 3:19–30. doi: 10.1016/j.fpsl.2014.10.005 CrossRefGoogle Scholar
  7. Dey PM, Harborne JB (1997) Plant biochemistry. Academic Press, LondonGoogle Scholar
  8. Di Stefano V, Pitonzo R, Bartolotta A, D’Oca MC, Fuochic P (2014) Effects of γ-irradiation on the α-tocopherol and fatty acids content of raw unpeeled almond kernels (Prunus dulcis). LWT Food Sci Technol 59:572–576. doi: 10.1016/j.lwt.2014.04.055 CrossRefGoogle Scholar
  9. Fernandes Â, Antonio AL, Barreira JCM, Oliveira MBPP, Martins A, Ferreira ICFR (2012) Effects of gamma irradiation on physical parameters of Lactarius deliciosus wild edible mushrooms. Postharvest Biol Technol 74:79–84. doi: 10.1016/j.postharvbio.2012.06.019 CrossRefGoogle Scholar
  10. Fernandes Â, Barreira JCM, Antonio AL, Oliveira MBPP, Martins A, Ferreira ICFR (2016) Extended use of gamma irradiation in wild mushrooms conservation: validation of 2 kGy dose to preserve their chemical characteristics. LWT Food Sci Technol 67:99–105. doi: 10.1016/j.lwt.2015.11.038 CrossRefGoogle Scholar
  11. Ferreres F, Ribeiro V, Izquierdo AG, Rodrigues MÂ, Seabra RM, Andrade PB, Valentão P (2006) Rumex induratus leaves: interesting dietary source of potential bioactive compounds. J Agric Food Chem 54:5782–5789. doi: 10.1021/jf0613233 CrossRefGoogle Scholar
  12. García-Herrera P, Sánchez-Mata MC, Cámara M, Fernández-Ruiz V, Díez-Marqués C, Molina M, Tardío J (2014) Nutrient composition of six wild edible Mediterranean Asteraceae plants of dietary interest. J Food Compos Anal 34:163–170. doi: 10.1016/j.jfca.2014.02.009 CrossRefGoogle Scholar
  13. Gloria MBA, Adão RC (2013) Effect of gamma radiation on the ripening and levels of bioactive amines in bananas cv. Prata. Radiat Phys Chem 87:97–103. doi: 10.1016/j.radphyschem.2013.02.032 CrossRefGoogle Scholar
  14. Guerra L, Pereira C, Andrade PB, Rodrigues MÂ, Ferreres F, de Pinho PG, Seabra RM, Valentão P (2008) Targeted metabolite analysis and antioxidant potential of Rumex induratus. J Agric Food Chem 56:8184–8194. doi: 10.1021/jf801385z CrossRefGoogle Scholar
  15. Hallman GJ (2016) Process control in phytosanitary irradiation of fresh fruits and vegetables as a model for other phytosanitary treatment processes. Food Control. doi: 10.1016/j.foodcont.2016.02.010
  16. Hussain PR, Suradkar P, Javaid S, Akram H, Parvez S (2016) Influence of postharvest gamma irradiation treatment on the content of bioactive compounds and antioxidant activity of fenugreek (Trigonella foenum-graceum L.) and spinach (Spinacia oleracea L.) leaves. Innov Food Sci Emerg Technol 33:268–281. doi: 10.1016/j.ifset.2015.11.017 CrossRefGoogle Scholar
  17. ICGFI (1999) Facts about food irradiation: a series of fact sheets from the International Consultative Group on Food Irradiation. International Consultative Group on Food Irradiation, ViennaGoogle Scholar
  18. Ito VC, Alberti A, Avila S, Spoto M, Nogueira A, Wosiacki G (2016) Effects of gamma radiation on the phenolic compounds and in vitro antioxidant activity of apple pomace flour during storage using multivariate statistical techniques. Innov Food Sci Emerg Technol 33:251–259. doi: 10.1016/j.ifset.2015.12.015 CrossRefGoogle Scholar
  19. Jia Z, Tang M, Wu J (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559. doi: 10.1016/S0308-8146(98)00102-2 CrossRefGoogle Scholar
  20. Kühne B, Vanhonacker F, Gellynck X, Verbeke W (2010) Innovation in traditional food products in Europe: do sector innovation activities match consumers’ acceptance? Food Qual Prefer 21:629–638. doi: 10.1016/j.foodqual.2010.03.013 CrossRefGoogle Scholar
  21. Munné-Bosch S (2005) The role of α-tocopherol in plant stress tolerance. J Plant Physiol 162:743–748. doi: 10.1016/j.jplph.2005.04.022 CrossRefGoogle Scholar
  22. Nikolopoulou D, Grigorakis K, Stasini M, Alexis MN, Iliadis K (2007) Differences in chemical composition of field pea (Pisum sativum) cultivars: effects of cultivation area and year. Food Chem 103:847–852. doi: 10.1016/j.foodchem.2006.09.035 CrossRefGoogle Scholar
  23. Pereira C, Barros L, Carvalho AM, Ferreira ICFR (2011) Nutritional composition and bioactive properties of commonly consumed wild greens: potential sources for new trends in modern diets. Food Res Int 44:2634–2640. doi: 10.1016/j.foodres.2011.05.012 CrossRefGoogle Scholar
  24. Pereira C, Barros L, Carvalho AM, Ferreira ICFR (2013) Use of UFLC-PDA for the analysis of organic acids in thirty-five species of food and medicinal plants. Food Anal Method 6:1337–1344. doi: 10.1007/s12161-012-9548-6 CrossRefGoogle Scholar
  25. Pérez MB, Aveldaño MI, Croci CA (2007) Growth inhibition by gamma rays affects lipids and fatty acids in garlic sprouts during storage. Postharvest Biol Technol 44:122–130. doi: 10.1016/j.postharvbio.2006.08.018 CrossRefGoogle Scholar
  26. Pérez-Gregorio MR, García-Falcón MS, Simal-Gándara J (2011) Flavonoids changes in fresh-cut onions during storage in different packaging systems. Food Chem 124:652–658. doi: 10.1016/j.foodchem.2010.06.090 CrossRefGoogle Scholar
  27. Pinela J, Ferreira ICFR (2015) Non-thermal physical technologies to decontaminate and extend the shelf-life of fruits and vegetables: trends aiming at quality and safety. Crit Rev Food Sci Nutr. doi: 10.1080/10408398.2015.1046547 Google Scholar
  28. Pinela J, Antonio AL, Barros L, Barreira JCM, Carvalho AM, Oliveira MBPP, Santos-Buelga C, Ferreira ICFR (2015) Combined effects of gamma-irradiation and preparation method on antioxidant activity and phenolic composition of Tuberaria lignosa. RSC Adv 5:14756–14767. doi: 10.1039/C4RA14944K CrossRefGoogle Scholar
  29. Pinela J, Barreira JCM, Barros L, Antonio AL, Carvalho AM, Oliveira MBPP, Ferreira ICFR (2016) Postharvest quality changes in fresh-cut watercress stored under conventional and inert gas-enriched modified atmosphere packaging. Postharvest Biol Technol 112:55–63. doi: 10.1016/j.postharvbio.2015.10.004 CrossRefGoogle Scholar
  30. WHO (1999) High-dose irradiation: Wholesomeness of food irradiated with doses above 10 kGy. Report of a joint FAO/IAEA/WHO study group. World Health Organization, GenevaGoogle Scholar
  31. Wolfe K, Wu X, Liu RH (2003) Antioxidant activity of apple peels. J Agric Food Chem 51:609–614. doi: 10.1021/jf020782a CrossRefGoogle Scholar
  32. Yannakoulia M, Kontogianni M, Scarmeas N (2015) Cognitive health and Mediterranean Diet: just diet or lifestyle pattern? Ageing Res Rev 20:74–78. doi: 10.1016/j.arr.2014.10.003 CrossRefGoogle Scholar
  33. Yi C, Jiang Y, Shi J, Qu H, Duan X, Yang B, Prasad NK, Liu T (2009) Effect of adenosine triphosphate on changes of fatty acids in harvested litchi fruit infected by Peronophythora litchii. Postharvest Biol Technol 54:159–164. doi: 10.1016/j.postharvbio.2009.06.008 CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2016

Authors and Affiliations

  • José Pinela
    • 1
    • 2
  • João C. M. Barreira
    • 1
    • 2
  • Lillian Barros
    • 1
  • Sandra Cabo Verde
    • 3
  • Amilcar L. Antonio
    • 1
  • M. Beatriz P. P. Oliveira
    • 2
  • Ana Maria Carvalho
    • 1
  • Isabel C. F. R. Ferreira
    • 1
  1. 1.Mountain Research Centre (CIMO)ESA, Polytechnic Institute of BragançaBragançaPortugal
  2. 2.REQUIMTE/LAQV, Faculty of PharmacyUniversity of PortoPortoPortugal
  3. 3.Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior TécnicoUniversidade de LisboaBobadelaPortugal

Personalised recommendations