Journal of Food Science and Technology

, Volume 53, Issue 3, pp 1355–1362 | Cite as

Bacteriophage biocontrol of foodborne pathogens

  • Mustafa Kazi
  • Uday S. AnnapureEmail author


Bacteriophages are viruses that only infect bacterial cells. Phages are categorized based on the type of their life cycle, the lytic cycle cause lysis of the bacterium with the release of multiple phage particles where as in lysogenic phase the phage DNA is incorporated into the bacterial genome. Lysogeny does not result in lysis of the host. Lytic phages have several potential applications in the food industry as biocontrol agents, biopreservatives and as tools for detecting pathogens. They have also been proposed as alternatives to antibiotics in animal health. Two unique features of phage relevant for food safety are that they are harmless to mammalian cells and high host specificity, keeping the natural microbiota undisturbed. However, the recent approval of bacteriophages as food additives has opened the discussion about ‘edible viruses’. This article reviews in detail the application of phages for the control of foodborne pathogens in a process known as “biocontrol”.


Bacteriophage Biocontrol Biosanitation Lysin Lysogeny Phage therapy 


  1. Abedon ST (1999) Bacteriophage T4 resistance to lysis-inhibition collapse. Genet Res 74:1–11CrossRefPubMedGoogle Scholar
  2. Ackermann HW (2007) 5500 phages examined in the electron microscope. Arch Virol 152:227–243CrossRefPubMedGoogle Scholar
  3. Ackermann HW (2009) Phage classification and characterization. In: Bacteriophages. Humana press, pp 127–140Google Scholar
  4. Ackermann HW, DuBow MS (1987) Viruses of prokaryotes: general properties of bacteriophage. CRC Press, Boca RatonGoogle Scholar
  5. Ackermann HW, Prangishvili D (2012) Prokaryote viruses studied by electron microscopy. Arch Virol 157(10):1843–1849CrossRefPubMedGoogle Scholar
  6. Atterbury RJ (2009) Bacteriophage biocontrol in animals and meat products. Microb Biotechnol 2:601–612CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bigot B, Lee WJ, McIntyre L et al (2011) Control of Listeria monocytogenes growth in a ready-to-eat poultry product using a bacteriophage. Food Microbiol 28(8):1448–1452CrossRefPubMedGoogle Scholar
  8. Bigwood T, Hudson JA, Billington C (2009) Influence of host and bacteriophage concentrations on the inactivation of food-borne pathogenic bacteria by two phages. FEMS Microbiol Lett 291:59–64CrossRefPubMedGoogle Scholar
  9. Borysowski J, Weber-Dabrowska B, Gorski A (2006) Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med 231:366–377CrossRefGoogle Scholar
  10. Bruttin A, Brussow H (2005) Human volunteers receiving escherichia coli phage T4 orally: a safety test of phage therapy. Am Soc Microbiol 49:2874–2878Google Scholar
  11. Bueno E, Garcıa P, Martınez B, Rodrıguez A (2012) Phage inactivation of Staphylococcus aureus in fresh and hard-type cheeses. Int J Food Microbiol 158(1):23–27CrossRefPubMedGoogle Scholar
  12. Carlton RM, Noordman WH, Biswas B, de Meester ED, Loessner MJ (2005) Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul Toxicol Pharmacol 43(3):301–312CrossRefPubMedGoogle Scholar
  13. Carvalho CM, Gannon BW, Halfhide DE, Santos SB, Hayes CM, Roe JM, Azeredo J (2010) The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of campylobacter coli and campylobacter jejuni in chickens. BMC Microbiol 10(1):232CrossRefPubMedPubMedCentralGoogle Scholar
  14. Civerolo EL, Kiel HL (1969) Inhibition of bacterial spot of peach foliage by Xanthomonas pruni bacteriophage. Phytopathology 59:1966–1967Google Scholar
  15. Coffey B, Mills S, Coffey A, McAuliffe O, Ross RP (2010) Phage and their lysins as biocontrol agents for food safety applications. Ann Rev Food Sci Technol 1:449–468CrossRefGoogle Scholar
  16. Delbruck M (1940) The growth of bacteriophage and lysis of the host. J Gen Physiol 23:643–660CrossRefPubMedPubMedCentralGoogle Scholar
  17. Delisle AL, Levin RE (1969) Bacteriophages of psychrophilic pseudomonads. I. Host range of phage pools active against fish spoilage and fish-pathogenic pseudomonads. Anton Leeuw 35:307–317CrossRefGoogle Scholar
  18. DuPont HL (2007) The growing threat of foodborne bacterial enteropathogens of animal origin. Clin Infect Dis 45:1353–1361CrossRefPubMedGoogle Scholar
  19. During K, Porsch P, Fladung M, Lorz H (1993) Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovora. Plant J 3:587–598CrossRefGoogle Scholar
  20. Dykes GA, Moorhead SM (2002) Combined antimicrobial effect of nisin and a listeriophage against Listeria monocytogenes in broth but not in buffer or on raw beef. Int J Food Microbiol 73(1):71–81CrossRefPubMedGoogle Scholar
  21. El-Shibiny A, Scott A, Timms A, Metawea Y, Connerton P, Connerton I (2009) Application of a group II campylobacter bacteriophage to reduce strains of Campylobacter jejuni and campylobacter coli colonizing broiler chickens. J Food Prot 72(4):733–740CrossRefPubMedGoogle Scholar
  22. Fischetti VA (2008) Bacteriophage lysins as effective antibacterials. Curr Opin Microbiol 11:393–400CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fischetti VA (2010) Bacteriophage endolysins: a novel anti-infective to control gram-positive pathogens. Int J Med Microbiol 300:357–362CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gaeng S, Scherer S, Neve H, Loessner MJ (2000) Gene cloning and expression and secretion of Listeria monocytogenes bacteriophage-lytic enzymes in Lactococcus lactis. Appl Environ Microbiol 66:2951–2958CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gill J, Abedon ST (2003) Bacteriophage ecology and plants. APSnet FeatureGoogle Scholar
  26. Gill J, Sabour PM, Leslie KE, Griffiths MW (2006) Bovine whey proteins inhibit the interaction of staphylococcus aureus and bacteriophage K. J Appl Microbiol 101(2):377–386CrossRefPubMedGoogle Scholar
  27. Greer GG (1982) Psychrotrophic bacteriophages for beef spoilage pseudomonads. J Food Prot 45:1318–1325CrossRefGoogle Scholar
  28. Greer GG (1988) Effects of phage concentration, bacterial density, and temperature on phage control of beef spoilage. J Food Sci 53:1226–1227CrossRefGoogle Scholar
  29. Greer GG (2005) Bacteriophage control of foodborne bacteria. J Food Prot 68(5):1102–1111CrossRefPubMedGoogle Scholar
  30. Guenther S, Loessner MJ (2011) Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red- smear cheeses. Bacteriophage 1(2):94–100CrossRefPubMedPubMedCentralGoogle Scholar
  31. Guenther S, Herzig O, Fieseler L, Klumpp J, Loessner MJ (2012) Biocontrol of salmonella typhimurium in RTE foods with the virulent bacteriophage FO1-E2. Int J Food Microbiol 154(1–2):66–72CrossRefPubMedGoogle Scholar
  32. Guttman B, Raya R, Kutter E (2005) Basic phage biology. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and applications. CRC Press, Boca Raton, p 28Google Scholar
  33. Hagens S, Loessner MJ (2010) Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. Curr Pharm Biotechnol 11(1):58–68CrossRefPubMedGoogle Scholar
  34. Holck A, Berg J (2009) Inhibition of Listeria monocytogenes in cooked ham by virulent bacteriophages and protective cultures. Appl Environ Microbiol 75(21):6944–6946CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hooton SPT, Atterbury RJ, Connerton IF (2011) Application of a bacteriophage cocktail to reduce salmonella typhimurium U288 contamination on pig skin. Int J Food Microbiol 151(2):157–163CrossRefPubMedGoogle Scholar
  36. Ikeda H, Tomizawa J (1965) Transducing fragments in generalized transduction by phage P1. I. Molecular origin of the fragments. J Mol Biol 14:85–109CrossRefPubMedGoogle Scholar
  37. Kasman LM, Kasman A, Westwater C, Dolan J, Schmidt MG, Norris JS (2002) Overcoming the phage replication threshold: a mathematical model with implications for phage therapy. J Virol 76:5557–5564CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kim W-S, Salm H, Geider K (2004) Expression of bacteriophage fEa1h lysozyme in escherichia coli and its activity in growth inhibition of Erwinia amylovora. Microbiology 150:2707–2714CrossRefPubMedGoogle Scholar
  39. Kim KP, Klumpp J, Loessner MJ (2007) Enterobacter sakazakii bacteriophages can prevent bacterial growth in reconstituted infant formula. Int J Food Microbiol 115:195–203CrossRefPubMedGoogle Scholar
  40. Kutter E, Sulakvelidze A (2005) Introduction. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and applications. CRC Press, Boca Raton, p 1Google Scholar
  41. Leverentz B, Conway WS, Alavidze Z (2001) Examination of bacteriophage as a biocontrol method for salmonella on fresh-cut fruit: a model study. J Food Prot 64(8):1116–1121CrossRefPubMedGoogle Scholar
  42. Leverentz B, Conway WS, Camp MJ et al (2003) Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl Environ Microbiol 69(8):4519–4526CrossRefPubMedPubMedCentralGoogle Scholar
  43. Leverentz B, Conway WS, Janisiewicz W, Camp MJ (2004) Optimizing concentration and timing of a phage spray application to reduce Listeria monocytogenes on honeydew melon tissue. J Food Prot 67(8):1682–1686CrossRefPubMedGoogle Scholar
  44. Martınez B, Obeso JM, Rodrıguez A, Garcıa P (2008) Nisin- bacteriophage crossresistance in Staphylococcus aureus. Int J Food Microbiol 122(3):253–258CrossRefPubMedGoogle Scholar
  45. Maura D, Debarbieux L (2011) Bacteriophages as twenty-first century antibacterial tools for food and medicine. Appl Microbiol Biotechnol 90:851–885CrossRefPubMedGoogle Scholar
  46. McIntyre L, Hudson JA, Billington C, Withers H (2007) Biocontrol of bacteria: past, present and future strategies. Food N Z 7:25–32Google Scholar
  47. Modi R, Hirvi Y, Hill A, Griffiths MW (2001) Effect of phage on survival of salmonella enteritidis during manufacture and storage of cheddar cheese made from raw and pasteurized milk. J Food Prot 64(7):927–933CrossRefPubMedGoogle Scholar
  48. Monk AB, Rees CD, Barrow P, Hagens S, Harper DR (2010) Bacteriophage applications: where are we now? Lett Appl Microbiol 51:363–369CrossRefPubMedGoogle Scholar
  49. Montanez-Izquierdo VY, Salas-Vazquez DI, Rodrıguez-Jerez JJ (2012) Use of epifluorescence microscopy to assess the effectiveness of phage P100 in controlling Listeria monocytogenes biofilms on stainless steel surfaces. Food Control 23:470–477CrossRefGoogle Scholar
  50. Murray AG, Jackson GA (1992) Viral dynamics: a model of the effects size, shape, motion and abundance of single-celled planktonic organisms and other particles. Mar Ecol Prog Ser 89:103–116CrossRefGoogle Scholar
  51. O’Flaherty S, Coffey A, Meaney WJ, Fitzgerald GF, Ross RP (2005) Inhibition of bacteriophage K proliferation on staphylococcus aureus in raw bovine milk. Lett Appl Microbiol 41(3):274–279CrossRefPubMedGoogle Scholar
  52. O’Flynn G, Ross RP, Fitzgerald GF, Coffey A (2004) Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157: H7.Applied and. Environ Microbiol 70(6):3417–3424CrossRefGoogle Scholar
  53. Obeso JM, Martınez B, Rodrıguez A, Garcıa P (2008) Lytic activity of the recom- binant staphylococcal bacteriophage FH5 endolysin active against staphylococcus aureus in milk. Int J Food Microbiol 128:212–218CrossRefPubMedGoogle Scholar
  54. Patel J, Sharma M, Millner P, Calaway T, Singh M (2011) Inactivation of Escherichia coli O157:H7 attached to spinach harvester blade using bacteriophage. Foodborne Pathog Dis 8(4):541–546CrossRefPubMedGoogle Scholar
  55. Ravensdale M, Blom TJ, Gracia-Garza A, Svircev AM, Smith RJ (2007) Bacteriophages and the control of Erwinia carotovora subsp. carotovora. Can J Plant Pathol 29(2):121–130CrossRefGoogle Scholar
  56. Rosenquist H, Nielsen NL, Sommer HM, Nørrung B, Christensen BB (2003) Quantitative risk assessment of human campylobacteriosis associated with thermophilic campylobacter species in chickens. Int J Food Microbiol 83(1):87–103CrossRefPubMedGoogle Scholar
  57. Roy B, Ackermann HW, Pandian S, Picard G, Goulet J (1993) Biological inactivation of adhering Listeria monocytogenes by listeriaphages and a quaternary ammonium compound. Appl Environ Microbiol 59:2914–2917PubMedPubMedCentralGoogle Scholar
  58. Santander J, Robeson J (2007) Phage-resistance of salmonella enterica serovar enteritidis and pathogenesis in Caenorhabditis elegans is mediated by the lipopolysaccharide. Electron J Biotechnol 10:627–632CrossRefGoogle Scholar
  59. Sharma M, Patel JR, Conway WS, Ferguson S, Sulakvelidze A (2009) Effectiveness of bacteriophages in reducing Escherichia coli O157:H7 on fresh-cut cantaloupes and lettuce. J Food Prot 72(7):1481–1485CrossRefPubMedGoogle Scholar
  60. Sheng H, Knecht HJ, Kudva IT, Hovde CJ (2006) Application of bacteriophages to control intestinal Escherichia coli O157:H7 levels in ruminants. Appl Environ Microbiol 72(8):5359–5366CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sillankorva SM, Oliveira H, Azeredo J (2012) Bacteriophages and their role in food safety. Int J Microbiol 2012:1–13CrossRefGoogle Scholar
  62. Siringan P, Connerton PL, Payne RJH, Connerton IF (2011) Bacteriophage- mediated dispersal of campylobacter jejuni biofilms. Appl Environ Microbiol 77(10):3320–3326CrossRefPubMedPubMedCentralGoogle Scholar
  63. Soni A, Nannapaneni R, Hagens S (2010) Reduction of Listeria monocytogenes on the surface of fresh channel catfish fillets by bacteriophage listex p100. Foodborne Pathog Dis 7(4):427–434CrossRefPubMedGoogle Scholar
  64. Strauch E, Hammerl J, Hertwig S (2007) Bacteriophages: new tools for safer food? J Verbr Lebensm 2:138–143CrossRefGoogle Scholar
  65. Tabla R, Martínez B, Rebollo JE, González J, Ramírez MR, Roa I, Rodríguez A, García P (2012) Bacteriophage performance against staphylococcus aureus in milk is improved by high hydrostatic pressure treatments. Int J Food Microbiol 156(3):209–213CrossRefPubMedGoogle Scholar
  66. Tarahovsky YS, Ivanitsky GR, Khusainov AA (1994) Lysis of escherichia coli cells induced by bacteriophage T4. FEMS Microbiol Lett 122:195–199CrossRefPubMedGoogle Scholar
  67. Tomat D, Mercanti Q, Balague C, Quiberoni A (2013) Phage biocontrol of enteropathogenic and Shiga toxin-producing escherichia coli during milk fermentation. Lett Appl Microbiol 57:3–10CrossRefPubMedGoogle Scholar
  68. Viazis S, Akhtar M, Feirtag J, Diez-Gonzalez F (2011) Reduction of Escherichia coli O157:H7 viability on hard surfaces by treatment with a bacteriophage mixture. Int J Food Microbiol 145(1):37–42CrossRefPubMedGoogle Scholar
  69. Wagenaar JA, Bergen MAPV, Mueller MA, Wassenaar TM, Carlton RM (2005) Phage therapy reduces Campylobacter jejuni colonization in broilers. Vet Microbiol 109(3–4):275–283CrossRefPubMedGoogle Scholar
  70. Ye J, Kostrzynska M, Dunfield K, Warriner K (2009) Evaluation of a biocontrol preparation consisting of enterobacter asburiae JX1 and a lytic bacteriophage cocktail to suppress the growth of salmonella javiana associated with tomatoes. J Food Prot 72(11):2284–2292CrossRefPubMedGoogle Scholar
  71. Ye J, Kostrzynska M, Dunfield K, Warriner K (2010) Control of salmonella on sprouting mung bean and alfalfa seeds by using a biocontrol preparation based on antagonistic bacteria and lytic bacteriophages. J Food Prot 73(1):9–17CrossRefPubMedGoogle Scholar
  72. Yoong P, Schuch R, Nelson D, Fischetti VA (2004) Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic resistant Enterococcus faecalis and Enterococcus faecium. J Bacteriol 186:4808–4812CrossRefPubMedPubMedCentralGoogle Scholar
  73. Zhang H, Wang R, Bao H (2013) Phage inactivation of foodborne Shigella on ready- to-eat spiced chicken. Poult Sci 92:211–217CrossRefPubMedGoogle Scholar
  74. Zimmer M, Vukov N, Scherer S, Loessner MJ (2002) The murein hydrolase of the bacteriophage j3626 dual lysis system is active against all tested Clostridium perfringens strains. Appl Environ Microbiol 68:5311–5317CrossRefPubMedPubMedCentralGoogle Scholar
  75. Zuber S, Boissin-Delaporte C, Michot L, Iversen C, Diep B, Brussow H et al (2008) Decreasing Enterobacter sakazakii (Cronobacter spp.) food contamination level with bacteriophages: prospects and problems. Microb Biotechnol 1:532–543CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2015

Authors and Affiliations

  1. 1.Department of Food Engineering and TechnologyInstitute of Chemical TechnologyMatungaIndia

Personalised recommendations