Journal of Food Science and Technology

, Volume 53, Issue 1, pp 451–460 | Cite as

Evaluation of antioxidant capacity of 13 plant extracts by three different methods: cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers

  • R. P. P. FernandesEmail author
  • M. A. Trindade
  • F. G. Tonin
  • C. G. Lima
  • S. M. P. Pugine
  • P. E. S. Munekata
  • J. M. Lorenzo
  • M. P. de Melo
Original Article


The aims of this study were: to evaluate the total equivalent antioxidant capacities (TEAC) and phenolic contents of 13 plants extracts; to select the most promising extracts regarding reducing activity using cluster analysis multivariate statistical technique; and to analyse evaluate sensory acceptance of lamb burgers produced with the most promising natural antioxidants replacing sodium erythorbate. Plant extracts were evaluated regarding TEAC by DPPH and FRAP methods, and total phenolics contents by Folin-Ciocalteau assay. The TEAC values ranged from 0.50 to 9.06 g trolox/100 g dry weight (dw) and from 43.6 to 472.32 μmol trolox/g dw for DPPH and FRAP methods, respectively, and the total phenolic contents from 5.98 to 74.01 mg GAE/g dw. Extracts from Origanum vulgare, Melissa officinalis, Origanum majorana L. and Rosmarinus officinalis were grouped as the ones with higher antioxidant capacities by cluster analysis. All burgers produced with each one of these four plant extracts or with sodium erythorbate showed no differences (P > 0.05) regarding consumers’ sensory acceptance. In conclusion, it is possible to replace sodium erythorbate in lamb burgers by any of the four natural extracts selected without compromising sensory acceptance of this meat product.


Equivalent concentrations Extraction Ovine hamburgers Radical-scavenging activity Sensory acceptance 



This study was supported by São Paulo Research Foundation - FAPESP (Case n. 2011/08093-2) and National Council for Scientific and Technological Development - CNPq (Case n. 475274/2011-3).


  1. Akarpat A, Turhan S, Ustun NS (2008) Effects of hot-water extracts from myrtle, rosemary, nettle and lemon balm leaves on lipid oxidation and color of beef patties during frozen storage. J Food Process Preserv 32:117–132CrossRefGoogle Scholar
  2. Beal P, Faion AM, Cichoski AJ, Cansian RL, Valduga AT, de Oliveira D, Valduga E (2011) Oxidative stability of fermented Italian-type sausages using mate leaves (Ilex paraguariensis St. Hil) extract as natural antioxidant. Int J Food Sci Nutr 62:703–710CrossRefGoogle Scholar
  3. Benzie IFF, Strain JJ (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299:15–23CrossRefGoogle Scholar
  4. Bozkurt H (2006) Utilization of natural antioxidants: green tea extract and thymbra spicata oil in Turkish dry-fermented sausage. Meat Sci 73:442–450CrossRefGoogle Scholar
  5. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30CrossRefGoogle Scholar
  6. Brewer MS (2011) Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci F 10:221–247CrossRefGoogle Scholar
  7. Capitani CD, Carvalho ACL, Rivelli DP, Barros SBM, Castro IA (2009) Evaluation of natural and synthetic compounds according to their antioxidant activity using a multivariate approach. Eur J Lipid Sci Technol 111:1090–1099CrossRefGoogle Scholar
  8. Capitani CD, Hatano MK, Marques MF, Castro IA (2015) Effects of optimized mixtures containing phenolic compounds on the oxidative stability of sausages. Food Sci Technol Int 19:69–77CrossRefGoogle Scholar
  9. Castellini C, Mugnai C, Dal Bosco A (2002) Effect of organic production system on broiler carcass and meat quality. Meat Sci 60:219–225CrossRefGoogle Scholar
  10. Chan EWC, Lim YY, Wong LF, Lianto FS, Wong SK, Lim KK, Joe CE, Lim TY (2008) Antioxidant and tyrosinase inhibition properties of leaves and rhizomes of ginger species. Food Chem 109:477–483CrossRefGoogle Scholar
  11. Dorman HJD, Peltoketo A, Hiltunen R, Tikkanen MJ (2003) Characterisation of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs. Food Chem 83:255–262CrossRefGoogle Scholar
  12. Dorman HJD, Bachmayer O, Kosar M, Hiltunen R (2004) Antioxidant properties of aqueous extracts from selected Lamiaceae species grown in Turkey. J Agric Food Chem 52:762–770CrossRefGoogle Scholar
  13. Gawlic-Dziki U (2012) Dietary spices as a natural effectors of lipoxygenase, xanthine oxidase, peroxidase and antioxidant agents. LWT Food Sci Technol 47:138–146CrossRefGoogle Scholar
  14. Hayes JE, Allen P, Brunton N, O’Grady MN, Kerry JP (2011) Phenolic composition and in vitro antioxidant capacity of four commercial phytochemical products: olive leaf extract (Olea europaea L.), lutein, sesamol and ellagic acid. Food Chem 126:948–955CrossRefGoogle Scholar
  15. Javanmardi J, Stushnoff C, Locke E, Vivanco JM (2003) Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chem 83:547–550CrossRefGoogle Scholar
  16. Katalinic V, Milos M, Kulisic T, Jukic M (2006) Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem 94:550–557CrossRefGoogle Scholar
  17. Kim DO, Lee CY (2004) Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit Rev Food Sci Nutr 44:253–273CrossRefGoogle Scholar
  18. Lara MS, Gutierrez JI, Timón M, Andrés AI (2011) Evaluation of two natural extracts (Rosmarinus officinalis L. and Melissa officinalis L.) as antioxidants in cooked pork patties packed in MAP. Meat Sci 88:481–488CrossRefGoogle Scholar
  19. Lorenzo JM, Sineiro J, Amado IR, Franco D (2014) Influence of natural extracts on the shelf life of modified atmosphere-packaged pork patties. Meat Sci 96:526–534CrossRefGoogle Scholar
  20. Madsen HL, Bertelsen G (1995) Spices as antioxidants. Trends Food Sci Technol 6:271–277CrossRefGoogle Scholar
  21. Meilgaard MC, Civille GV, Carr BT (2006) Sensory evaluation techniques, 4th edn. CRC Press, Boca Raton, 448pGoogle Scholar
  22. Michiels JA, Kevers C, Pincemail J, Defraigne JO, Dommes J (2012) Extraction conditions can greatly influence antioxidant capacity assays in plant food matrices. Food Chem 130:986–993CrossRefGoogle Scholar
  23. Ozogul Y, Uçar Y (2012) The effects of natural extracts on the quality changes of frozen chub mackerel (Scomber japonicus) burgers. Food Bioprocess Technol 6:1550–1560CrossRefGoogle Scholar
  24. Pateiro M, Lorenzo JM, Amado IR, Franco D (2014) Effect of addition of green tea, chestnut and grape extract on the shelf-life of pig liver pâté. Food Chem 147:386–394CrossRefGoogle Scholar
  25. Shan B, Cai YZ, Sun M, Corke H (2005) Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem 53:7749–7759CrossRefGoogle Scholar
  26. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158Google Scholar
  27. Srinivasan K (2005) Role of spices beyond food flavoring: nutraceuticals with multiple health effects. Food Rev Int 21:167–188CrossRefGoogle Scholar
  28. Suhaj M (2006) Spice antioxidants isolation and their antiradical activity: a review. J Food Compos Anal 19:531–537CrossRefGoogle Scholar
  29. Trindade RA, Mancini-Filho J, Villavicencio ALCH (2009) Effects of natural antioxidants on the lipid profile of electron beam-irradiated beef burgers. Eur J Lipid Sci Technol 111:1161–1168CrossRefGoogle Scholar
  30. Tusevski O, Kostovska A, Iloska A, Trajkovska L, Simic SG (2014) Phenolic production and antioxidant properties of some Macedonian medicinal plants. Cent Eur J Biol 9:888–900Google Scholar
  31. Wojdylo A, Oszmianski J, Czemerys R (2007) Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem 105:940–949CrossRefGoogle Scholar
  32. Wongsa P, Chaiwarit J, Zamaludien A (2012) In vitro screening of phenolic compounds, potential inhibition against α-amylase and α-glucosidase of culinary herbs in Thailand. Food Chem 131:964–971CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2015

Authors and Affiliations

  • R. P. P. Fernandes
    • 1
    Email author
  • M. A. Trindade
    • 2
  • F. G. Tonin
    • 3
  • C. G. Lima
    • 1
  • S. M. P. Pugine
    • 1
  • P. E. S. Munekata
    • 2
  • J. M. Lorenzo
    • 4
  • M. P. de Melo
    • 1
  1. 1.Department of Basic Sciences, College of Animal Science and Food EngineeringUniversity of São Paulo (USP)PirassunungaBrazil
  2. 2.Department of Food EngineeringCollege of Animal Science and Food Engineering, University of São Paulo (USP)PirassunungaBrazil
  3. 3.Department of Biosystems EngineeringCollege of Animal Science and Food Engineering, University of São Paulo (USP)PirassunungaBrazil
  4. 4.Centro Tecnológico de la Carne de GaliciaSan Cibrán das ViñasSpain

Personalised recommendations