Journal of Food Science and Technology

, Volume 53, Issue 1, pp 42–49 | Cite as

Advantages and limitations of potential methods for the analysis of bacteria in milk: a review

  • Frederick Tawi TabitEmail author


Contamination concerns in the dairy industry are motivated by outbreaks of disease in humans and the inability of thermal processes to eliminate bacteria completely in processed products. HACCP principles are an important tool used in the food industry to identify and control potential food safety hazards in order to meet customer demands and regulatory requirements. Milk testing is of importance to the milk industry regarding quality assurance and monitoring of processed products by researchers, manufacturers and regulatory agencies. Due to the availability of numerous methods used for analysing the microbial quality of milk in literature and differences in priorities of stakeholders, it is sometimes confusing to choose an appropriate method for a particular analysis. The objective of this paper is to review the advantages and disadvantages of selected techniques that can be used in the analysis of bacteria in milk. SSC, HRMA, REP, and RAPD are the top four techniques which are quick and cost-effective and possess adequate discriminatory power for the detection and profiling of bacteria. The following conclusions were arrived at during this review: HRMA, REP and RFLP are the techniques with the most reproducible results, and the techniques with the most discriminatory power are AFLP, PFGE and Raman Spectroscopy.


Bacteria Analysis Identification Quantification Milk PCR 


  1. Anderson PN, Hume ME, Byrd JA, Hernandez C, Stevens SM, Stringfellow K, Caldwell DJ (2010) Evaluation of repetitive extragenic palindromic-polymerase chain reaction and denatured gradient gel electrophoresis in identifying Salmonella serotypes isolated from processed turkeys. Poult Sci 89(6):1293–1300CrossRefGoogle Scholar
  2. Bang J, Beuchat LR, Song H, Gu MB, Chang H-I, Kim HS, Ryu JH (2013) Development of a random genomic DNA microarray for the detection and identification of Listeria monocytogenes in milk. Int J Food Microbiol 161:134–141CrossRefGoogle Scholar
  3. Biswas S, Rolain J-M (2013) Use of MALDI-TOF mass spectrometry for identification of bacteria that are difficult to culture. J Microbiol Methods 92(1):14–25CrossRefGoogle Scholar
  4. Bouvier T, Del Giorgio PA (2003) Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports. FEMS Microbiol Ecol 44(1):3–15CrossRefGoogle Scholar
  5. Carbonnelle E, Mesquita C, Bille E, Day N, Dauphin B, Beretti JL, Ferroni A, Gutmann L, Nassif X (2011) MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Clin Biochem 44(1):104–109CrossRefGoogle Scholar
  6. Carmen Collado M, Hernandez M (2007) Identification and differentiation of Lactobacillus, Streptococcus and Bifidobacterium species in fermented milk products with bifidobacteria. Microbiol Res 162(1):86–92CrossRefGoogle Scholar
  7. Cattani F, Ferreira CAS, Oliveira SD (2013) The detection of viable vegetative cells of Bacillus sporothermodurans using propidium monoazide with semi-nested PCR. Food Microbiol 34:196–201CrossRefGoogle Scholar
  8. Cawthorn D-M, Witthuhn RC (2008) Selective PCR detection of viable Enterobacter sakazakii cells utilizing propidium monoazide or ethidium bromide monoazide. J Appl Microbiol 105(4):1178–1185CrossRefGoogle Scholar
  9. Chauhan K, Dhakal R, Seale RB, Deeth HC, Pillidge CJ, Powell IB, Craven H, Turner MS (2013) Rapid identification of dairy mesophilic and thermophilic sporeforming bacteria using DNA high resolution melt analysis of variable 16S rDNA regions. Int J Food Microbiol 165(2):175–183CrossRefGoogle Scholar
  10. Cobo F (2013) Application of MALDI-TOF mass spectrometry in clinical virology: a review. Open Virol J 7:84–90CrossRefGoogle Scholar
  11. Daly P, Collier T, Doyle S (2002) PCR-ELISA detection of Escherichia coli in milk. Lett Appl Microbiol 34(3):222–226CrossRefGoogle Scholar
  12. Delgado S, Rachid CT, Fernández E, Rychlik T, Alegría A, Peixoto RS, Mayo B (2013) Diversity of thermophilic bacteria in raw, pasteurized and selectively-cultured milk, as assessed by culturing, PCR-DGGE and pyrosequencing. Food Microbiol 36(1):103–111CrossRefGoogle Scholar
  13. Di Cagno R, Minervini G, Sgarbi E, Lazzi C, Bernini V, Neviani E, Gobbetti M (2010) Comparison of phenotypic (Biolog System) and genotypic (random amplified polymorphic DNA-polymerase chain reaction, RAPD-PCR, and amplified fragment length polymorphism, AFLP) methods for typing Lactobacillus plantarum isolates from raw vegetables and fruits. Int J Food Microbiol 143:246–253CrossRefGoogle Scholar
  14. Dušková M, Šedo O, Kšicová K, Zdráhal Z, Karpíšková R (2012) Identification of lactobacilli isolated from food by genotypic methods and MALDI-TOF MS. Int J Food Microbiol 159(2):107–114CrossRefGoogle Scholar
  15. Espy MJ, Uhl JR, Sloan LM, Buckwalter SP, Jones MF, Vetter EA, Yao JDC, Wengenack NL, Rosenblatt JE, Cockerill FR III, Smith TF (2006) Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev 19(1):165–256CrossRefGoogle Scholar
  16. Fawley WN, Wilcox MH (2002) Pulsed-field gel electrophoresis can yield DNA fingerprints of degradation-susceptible Clostridium difficile strains. J Clin Microbiol 40(9):3546–3547CrossRefGoogle Scholar
  17. Fry NK, Savelkoul PHM, Visca P (2009) Amplified fragment length polymorphism analysis. Methods Mol Biol 551:89–104CrossRefGoogle Scholar
  18. Fukushima M, Kakinuma K, Hayashi H, Nagai H, Ito K, Kawaguchi R (2003) Detection and identification of Mycobacterium species isolates by DNA microarray. J Clin Microbiol 41(6):2605–2615CrossRefGoogle Scholar
  19. Galal FH (2009) Comparison of RAPD and PCR-RFLP markers for classification and taxonomic studies of insects. Egypt Acad J Biol Sci 2(2):187–195Google Scholar
  20. Garcia AAF, Benchimol LL, Barbosa AMM, Geraldi IO, Souza CL Jr, de Souza AP (2004) Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines. Gen Mol Biol 27(4):579–588CrossRefGoogle Scholar
  21. Giraffa G, Lazzi C, Gatti M, Rossetti L, Mora D, Neviani E (2003) Molecular typing of Lactobacillus delbrueckii of dairy origin by PCR-RFLP of protein-coding genes. Int J Food Microbiol 82(2):163–172CrossRefGoogle Scholar
  22. Guillaume-Gentil O, Scheldeman P, Marugg J, Herman L, Joosten H, Heyndrickx M (2002) Genetic heterogeneity in Bacillus sporothermodurans as demonstrated by ribotyping and repetitive extragenic palindromic-PCR fingerprinting. Appl Environ Microbiol 68(9):4216–4224CrossRefGoogle Scholar
  23. Hadrys H, Balick M, Schierwater B (1992) Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol Ecol 1(1):55–63CrossRefGoogle Scholar
  24. Hahm BK, Maldonado Y, Schreiber E, Bhunia AK, Nakatsu CH (2003) Subtyping of foodborne and environmental isolates of Escherichia coli by multiplex-PCR, rep-PCR, PFGE, ribotyping and AFLP. J Microbiol Methods 53(3):387–399CrossRefGoogle Scholar
  25. Harz M, Rösch R, Popp J (2009) Vibrational spectroscopy—A powerful tool for the rapid identification of microbial cells at the single-cell level. Cytometry A 75A(2):104–113CrossRefGoogle Scholar
  26. Jasson V, Jacxsens L, Luning P, Rajkovic A, Uyttendaele M (2010) Alternative microbial methods: an overview and selection criteria. Food Microbiol 27(6):710–730CrossRefGoogle Scholar
  27. Jersek B, Tcherneva E, Rijpens N, Herman L (2008) Repetitive element sequence-based PCR for species and strain discrimination in the genus Listeria. Lett Appl Microbiol 23(1):55–60CrossRefGoogle Scholar
  28. Kern CC, Vogel RF, Behr J (2014) Differentiation of Lactobacillus brevis strains using matrix-assisted-laser-desorption-ionization-time-of-flight mass spectrometry with respect to their beer spoilage potential. Food Microbiol 40:18–24CrossRefGoogle Scholar
  29. Klaassen CHW, van Haren HA, Horrevorts AM (2002) Molecular fingerprinting of Clostridium difficile isolates: pulsed-field gel electrophoresis versus amplified fragment length polymorphism. J Clin Microbiol 40(1):101–104CrossRefGoogle Scholar
  30. Knight JC, McGuire W, Kortok MM, Kwiatkowski D (1999) Accuracy of genotyping of single-nucleotide polymorphisms by PCR-ELISA allele-specific oligonucleotide hybridization typing and by amplification refractory mutation system. Clin Chem 45(10):1860–1863Google Scholar
  31. Lazzia C, Bove CG, Sgarbi E, Gatti M, La Gioia F, Torriani S, Neviani E (2009) Application of AFLP fingerprint analysis for studying the biodiversity of Streptococcus thermophiles. J Microbiol Methods 79(1):48–54CrossRefGoogle Scholar
  32. Lin MC, Huang AH, Tsen HY, Wong HC, Chang TC (2005) Use of oligonucleotide array for identification of six foodborne pathogens and Pseudomonas aeruginosa grown on selective media. J Food Prot 68(11):2278–2286Google Scholar
  33. Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63(11):4516–4522Google Scholar
  34. Liu Y, Cai X, Zhang X, Gao Q, Yang X, Zheng Z, Luo M, Huang X (2006) Real time PCR using TaqMan and SYBR Green for detection of Enterobacter sakazakii in infant formula. J Microbiol Methods 65(1):21–31CrossRefGoogle Scholar
  35. López-Enríquez L, Rodríguez-Lázaro D, Hernández M (2007) Quantitative detection of Clostridium tyrobutyricum in milk by Real-Time PCR. Appl Environ Microbiol 73(11):3747–3751CrossRefGoogle Scholar
  36. Martin B, Raurich S, Garriga M, Aymerich T (2012) Effect of amplicon length in propidium monoazide quantitative PCR for the enumeration of viable cells of Salmonella in cooked ham. Food Anal Methods 6(2):683–690CrossRefGoogle Scholar
  37. Martya E, Buchsa J, Eugster-Meierb E, Lacroixa C, Meile L (2012) Identification of staphylococci and dominant lactic acid bacteria in spontaneously fermented Swiss meat products using PCR–RFLP. Food Microbiol 29(2):157–166CrossRefGoogle Scholar
  38. Matsui H, Tsuchiya R, Isobe Y, Narita M (2011) Analysis of bacterial community structure in Saba-Narezushi (Narezushi of Mackerel) by 16S rRNA gene clone library. J Food Sci Technol 50(4):791–796CrossRefGoogle Scholar
  39. Meisel S, Stöckel S, Elschner M, Melzer F, Rösch P, Popp J (2012) Raman spectroscopy as a potential tool for detection of Brucella spp. in milk. Appl Environ Microbiol 78(16):5575–5583CrossRefGoogle Scholar
  40. Moter A, Göbel UB (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 41(2):85–112CrossRefGoogle Scholar
  41. Murphy SC (2010) Hazard analysis critical control point and other food safety systems in milk processing. In: Griffiths M (ed) Improving the safety and quality of milk: volume 1: milk production and processing. Woodhead Publishing Limited, Cambridge, pp 451–481CrossRefGoogle Scholar
  42. Murphy BP, Buckley JF, O’Connor EM, Gilroy D, Fanning S (2008) Comparison of Salmonella species recovered from Irish liquid milk production holdings with temporal clinical veterinary isolates. Int J Hyg Environ Health 211(3–4):283–291CrossRefGoogle Scholar
  43. Muyzer G, Brinkoff T, Nübel U, Santegoeds C, Schäfer H, Wawer C (2004) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Kowalchuk GA, de Bruijn FJ, Head IM, Akkermans ADL, van Elsas JD (eds) Molecular microbial ecology manual, 2nd edn. Kluwer Academic Publishers, Dordrecht, pp 745–770Google Scholar
  44. Nakatsu CH, Torsvik V, Øvreas L (2000) Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products. Soil Sci Soc Am J 64(4):1382–1388CrossRefGoogle Scholar
  45. Naze F, Jouen E, Randriamahazo RT, Simac C, Laurent P, Blériot A, Chiroleu F, Gagnevin L, Pruvost O, Michault A (2010) Pseudomonas aeruginosa outbreak linked to mineral water bottles in a neonatal intensive care unit: fast typing by use of high-resolution melting analysis of a variable-number tandem-repeat locus. J Clin Microbiol 48(9):3146–3152CrossRefGoogle Scholar
  46. Nielsen EM, Engberg J, Fussing V, Petersen L, Brogren C-H, On STW (2000) Evaluation of phenotypic and genotypic methods for subtyping Campylobacter jejuni isolates from humans, poultry, and cattle. J Clin Microbiol 38(10):3800–3810Google Scholar
  47. Olivares-Fuster O, Shoemaker CA, Klesius PH, Arias CR (2007) Molecular typing of isolates of the fish pathogen, Flavobacterium columnare, by single-strand conformation polymorphism analysis. FEMS Microbiol Lett 269(1):63–69CrossRefGoogle Scholar
  48. Oliver SP, Jayarao BM, Almeida RA (2005) Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathog Dis 2(2):115–129CrossRefGoogle Scholar
  49. Ota M, Asamura H, Oki T, Sada M (2009) Restriction enzyme analysis of PCR products. Methods Mol Biol 578:405–414CrossRefGoogle Scholar
  50. Perelle S, Dilasser F, Malorny B, Grout J, Hoorfar J, Fach P (2004) Comparison of PCR-ELISA and lightcycler real-time PCR assays for detecting Salmonella spp. in milk and meat samples. Mol Cell Probes 18(6):409–420CrossRefGoogle Scholar
  51. Rösch P, Schmitt M, Kiefer W, Popp J (2003) The identification of microorganisms by micro-Raman spectroscopy. J Mol Struct 661–662:363–369CrossRefGoogle Scholar
  52. Ross TL, Merz WG, Farkosh M, Carroll KC (2005) Comparison of an automated repetitive sequence-based PCR microbial typing system to pulsed-field gel electrophoresis for analysis of outbreaks of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 43(11):5642–5647CrossRefGoogle Scholar
  53. Rossetti L, Giraffa G (2005) Rapid identification of dairy lactic acid bacteria by M13-generated, RAPD-PCR fingerprint databases. J Microbiol Methods 63(2):135–144CrossRefGoogle Scholar
  54. Saubusse M, Millet L, Delbès C, Callon C, Montel MC (2007) Application of single strand conformation polymorphism – PCR method for distinguishing cheese bacterial communities that inhibit Listeria monocytogenes. Int J Food Microbiol 116(1):126–135CrossRefGoogle Scholar
  55. Sheikha AFE, Durand N, Sarter S, Okullo JBL, Montet D (2011) Study of the microbial discrimination of fruits by PCR-DGGE: Application to the determination of the geographical origin of Physalis fruits from Colombia, Egypt, Uganda and Madagascar. Food Control 24(1–2):57–63Google Scholar
  56. Sjöberg F, Nowrouzian F, Rangel I, Hannoun C, Moore E, Adlerberth I, Wold AE (2013) Comparison between terminal-restriction fragment length polymorphism (T-RFLP) and quantitative culture for analysis of infants’ gut microbiota. J Microbiol Methods 94(1):37–46CrossRefGoogle Scholar
  57. Smith S, Cantet F, Angelini F, Marais A, Mégraud F, Bayerdöffer E, Miehlke S (2002) Discriminatory power of RAPD, PCR-RFLP and southern blot analyses of ureCD or ureA gene probes on Helicobacter pylori isolates. Z Naturforsch C 57(5–6):516–521Google Scholar
  58. Taddele HM, Rathore R, Dhama K, Agarwal RK (2011) Epidemiological characterization of Salmonella gallinarum isolates of poultry origin in India, employing two PCR based typing methods of RAPD-PCR and PCR-RFLP. Asian J Anim Vet Adv 6(11):1037–1051CrossRefGoogle Scholar
  59. Tardy F, Gaurivaud P, Tricot A, Maigre L, Poumarat F (2009) Epidemiological surveillance of mycoplasmas belonging to the ‘Mycoplasma mycoides’ cluster: Is DGGE fingerprinting of 16S rRNA genes suitable? Lett Appl Microbiol 48(2):210–217CrossRefGoogle Scholar
  60. Te Giffel MC, Wagendorp A, Herrewegh A, Driehuis F (2002) Bacterial spores in silage and raw milk. Antonie Van Leeuwenhoek 81(1–4):625–630CrossRefGoogle Scholar
  61. Tewari A, Abdullah S (2014) Bacillus cereus food poisoning: international and Indian perspective. J Food Sci Technol 52(5):2500–2511CrossRefGoogle Scholar
  62. Thangaraj M, Vishruth P, Ramesh T, Lipton AP (2011) RAPD fingerprinting and demonstration of genetic variation in three pathogens isolated from mangrove environment. Asian J Biotechnol 3(3):269–274CrossRefGoogle Scholar
  63. Thomsen N, Ali RG, Ahmed JN, Arkell RM (2012) High resolution melt analysis (HRMA): a viable alternative to agarose gel electrophoresis for mouse genotyping. PLoS One 7(9):e45252CrossRefGoogle Scholar
  64. Verdier-Metz I, Michel V, Delbès C, Montel M-C (2009) Do milking practices influence the bacterial diversity of raw milk? Food Microbiol 26(3):305–310CrossRefGoogle Scholar
  65. Vossen RHAM, Aten E, Roos A, den Dunnen JT (2009) High-resolution melting analysis (HRMA)—more than just sequence variant screening. Hum Mutat 30(6):860–866CrossRefGoogle Scholar
  66. Wenning M, Breitenwieser B, Konrad R, Huber I, Busch U, Scherer S (2014) Identification and differentiation of food-related bacteria: a comparison of FTIR spectroscopy and MALDI-TOF mass spectrometry. J Microbiol Methods 103:44–52CrossRefGoogle Scholar
  67. Willemse-Erix DFM, Scholtes-Timmerman MJ, Jachtenberg J-W, van Leeuwen WB, Horst-Kreft D, Bakker Schut TC, Deurenberg RH, Puppels GJ, van Belkum A, Vos MC, Maquelin K (2009) Optical fingerprinting in bacterial epidemiology: Raman spectroscopy as a real-time typing method. J Clin Microbiol 47(3):652–659CrossRefGoogle Scholar
  68. Yang X, Badoni M, Gill CO (2011) Use of propidium monoazide and quantitative PCR for differentiation of viable Escherichia coli from E. coli killed by mild or pasteurizing heat treatments. Food Microbiol 28(8):1478–1482CrossRefGoogle Scholar
  69. Yang J-X, Chen Z-L, Yang H-Y, Huang A-X, Chen ZD (2013) Randomly amplified polymorphic DNA (RAPD) analysis of lactic acid bacteria from Yak milk cheese. Food Sci 34(7):206–211Google Scholar
  70. Yu M, Hodgetts J, Rossall S, Dickinson M (2009a) Using terminal restriction fragment length polymorphism (T-RFLP) to monitor changes in fungal populations associated with plants. J Plant Pathol 91(2):417–423Google Scholar
  71. Yu J, Sun Z, Liu W, Zhang J, Sun T, Bao Q, Zhang H (2009b) Rapid identification of lactic acid bacteria isolated from home-made fermented milk in Tibet. J Gen Appl Microbiol 55(3):181–190CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2015

Authors and Affiliations

  1. 1.Department of Life and Consumer SciencesUniversity of South AfricaFloridaSouth Africa
  2. 2.Department of Life and Consumer SciencesUniversity of South AfricaFloridaSouth Africa

Personalised recommendations