Journal of Food Science and Technology

, Volume 52, Issue 9, pp 5961–5967 | Cite as

Powder lemon juice containing oligosaccharides obtained by dextransucrase acceptor reaction synthesis and dehydrated in sprouted bed

  • Raquel Macedo Dantas Coelho
  • Antônia Daiana Andrade Araújo
  • Cláudia Patrícia Mourão Lima Fontes
  • Ana Raquel Araujo da Silva
  • José Maria Correia da Costa
  • Sueli Rodrigues
Original Article

Abstract

Oligosaccharides can be synthesized using the sugars present in the fruit juices through the dextransucrase acceptor reaction. In the present work, the effect of reducing sugar and sucrose concentration on oligosaccharide formation in lemon juice was evaluated through response surface methodology. The oligosaccharide formation in lemon juice was favored at high concentrations of sucrose (75 g/L) and reducing sugar (75 g/L). At this synthesis conditions, an oligosaccharide concentration of 94.81 g/L was obtained with a conversion of 63.21% of the initial sugars into the target product. Oligosaccharides with degree of polymerization up to 11 were obtained. The lemon juice was dehydrated in spouted bed using maltodextrin as drying adjuvant. The powder obtained at 60°C with 20 % maltodextrin presented low moisture (2.24 %), low water activity (Aw = 0.18) and the lowest reconstitution time (~46 s). The results showed that lemon juice is suitable for oligosaccharides enzyme synthesis and can be dehydrated in spouted bed.

Keywords

Oligosaccharides Dextransucrase Leuconostoc mesenteroides Lemon juice 

Notes

Acknowledgments

Authors thank to CNPq thought the National Institute of Science and Technology of Tropical Fruits, FUNCAP, CAPES and BNB for the financial support and scholarships.

References

  1. AOAC - ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS (15th edition) (1995). Official Methods of Analysis of the Association of Official Analytical Chemists, WashingtonGoogle Scholar
  2. Böttger FH, Etzel MR, Lucey JA (2013) In vitro infant digestion of whey protein–dextran glycates. Food Dig 4:76–84Google Scholar
  3. Chung CH, Day DF (2004) Efficacy of Leuconostoc mesenteroides (ATCC 13146) isomalto-oligosaccharides as poultry prebiotic. Poult Sci 83:1302–1306CrossRefGoogle Scholar
  4. Djouzi M, Andrieus C, Pelore V, Somarriba S, Popot F, Paul F, Monsan P, Szylit O (1995) Degradation and fermentation of α-gluco-oligosaccharides by bacterial strains from human colon: In vitro and in vivo studies in gnotobiotic rats. J Appl Bacteriol 79:117–127CrossRefGoogle Scholar
  5. Dubois M, Gilles KA, Hamilton PA, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  6. Ebert KH, Schenk G (1968) Mechanisms of biopolymer growth: The formation of dextran and levan. Adv Enzymol 30:179–221Google Scholar
  7. González-Molina E, Moreno DA, García-Viguera C (2008) Genotype and harvest time influence the phytochemical quality of Fino lemon juice (Citrus limon (L.) Burm. F.) for industrial use. J Agric Food Chem 56:1669–1675CrossRefGoogle Scholar
  8. Goula AM, Adamopoulos KG (2010) A New technique for spray drying orange juice concentrate. Innov Food Sci Emerging Technol 11:342–351CrossRefGoogle Scholar
  9. Hauri HP, Quaroni A, Isselbacher KJ (1979) Biogenesis of intestinal plasma membrane: posttranslational route and cleavage of sucrase-isomaltase. Proc Natl Acad Sci U S A 76:5183–5186CrossRefGoogle Scholar
  10. Heincke K, Demuth B, Jordening H, Buchholz K (1999) Kinetics of the dextransucrase acceptor reaction with maltose — experimental results and modeling. Enzym Microb Technol 24:523–534CrossRefGoogle Scholar
  11. Koh J, Kim Y, Oh J (2010) Chemical Characterization of Tomato Juice Fermented with Bifidobacteria. J Food Sci 75:428–432CrossRefGoogle Scholar
  12. Kooi ER, La Grange I (1952) Process for producing dextran. US Patent 268981-Corn Product Company – New York-USAGoogle Scholar
  13. Lee MS, Cho SK, Eom HJ, Kim SY, Kim TJ, Han NS (2008) Optimized substrate concentrations for production of long-chain isomaltooligosaccharides using dextransucrase ofLeuconostocmesenteroides B-512F. World J Microbiol Biotechnol 118:1141–1145Google Scholar
  14. Machida Y. Fukui F, Komoto T (1986) Use of oligosaccharides for promoting the proliferation of bidifidobacteria. European Patent 0242459Google Scholar
  15. Madhukumar MS, Muralikrishna G (2012) Fermentation of xylooligosaccharides obtained from wheat bran and Bengal gram huskby lactic acid bacteria and bifidobacteria. J Food Sci Technol 49:745–752CrossRefGoogle Scholar
  16. Miller G (1959) Use of dinitrosolicilic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRefGoogle Scholar
  17. Miller AW, Eklund SH, Robyt JF (1986) Milligram to gram scale purification and characterization of dextransucrase from Leuconostoc mesenteroides B-512 F. Carbohydr Res 147:119–133CrossRefGoogle Scholar
  18. Rabelo MC, Fontes CPML, Rodrigues S (2009) Enzyme synthesis of Oligosaccharides using cashew apple juice as substrate. Bioresour Technol 100:5574–5580CrossRefGoogle Scholar
  19. Rabelo MC, Honorato TL, Gonçalves LRB, Pinto GAS, Rodrigues S (2006) Enzymatic synthesis of prebiotic oligosaccharides. Appl Biochem Biotechnol 133:31–40CrossRefGoogle Scholar
  20. Robyt JF (2000) Thin layer (planar) chromatography. In: Reference module in chemistry, molecular sciences and chemical engineering, from encyclopedia of separation science, Academic Press, p 2235–2244Google Scholar
  21. Robyt JF, Kimble BK, Walseth TF (1974) The mechanism of dextransucrase action. Arch Biochem Biophys 165:634–640CrossRefGoogle Scholar
  22. Rodrigues S, Lona LMF, Franco TT (2006) Optimizing panose production by modeling and simulation using factorial design and surface response analysis. J Food Eng 90:20–26Google Scholar
  23. Rodrigues S, Lona LMF, Franco TT (2003) Effect of phosphate concentration on the production of dextransucrase by Leuconostoc mesenteroides NRRL B512F. Bioprocess Biosyst Eng 26:57–62CrossRefGoogle Scholar
  24. Rodrigues S, Lona LMF, Franco TT (2005) The effect of maltose on dextran yield and molecular weight distribution. Bioprocess Biosyst Eng 28:9–14CrossRefGoogle Scholar
  25. Rodríguez D, Ramsay AJ, Quesada V, Garabaya C, Campos E, Freije JMP, López-Otín C (2013) Functional analysis of sucrase-isomaltase mutations from chronic lymphocytic leukemia patients. Hum Mol Genet 22:2273–2282CrossRefGoogle Scholar
  26. Sarbini SR, Kolia S, Gibson GR, Rastall RA (2013) In vitro fermentation of commercial α-gluco-oligosaccharide by faecal microbiota from lean and obese human subjects. Br J Nutr 109:1980–1989CrossRefGoogle Scholar
  27. Silva IM, Rabelo MC, Rodrigues S (2012) Cashew juice containing prebiotic oligosaccharides. J Food Sci Technol. doi: 10.1007/s13197-012-0689-9, in pressGoogle Scholar
  28. Tanriseven A, Robyt JF (1992) Inhibition of dextran synthesis by acceptor reactions of dextransucrase and the demonstration of a separate acceptor binding-site. Carbohydr Res 225:321–329CrossRefGoogle Scholar
  29. Vergara CMA, Honorato TL, Maia GA, Rodrigues S (2010) Prebiotic effect of fermented cashew apple (Anacardium occidentale L.) juice. LWT Food Sci Technol 43:141–145CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2014

Authors and Affiliations

  • Raquel Macedo Dantas Coelho
    • 1
  • Antônia Daiana Andrade Araújo
    • 1
  • Cláudia Patrícia Mourão Lima Fontes
    • 1
  • Ana Raquel Araujo da Silva
    • 1
  • José Maria Correia da Costa
    • 1
  • Sueli Rodrigues
    • 1
  1. 1.Departamento de Tecnologia de AlimentosUniversidade Federal do Ceará, Centro de Ciências AgráriasCearaBrazil

Personalised recommendations