Journal of Food Science and Technology

, Volume 52, Issue 4, pp 2304–2311

Influence of drying temperature on dietary fibre, rehydration properties, texture and microstructure of Cape gooseberry (Physalis peruviana L.)

  • Antonio Vega-Gálvez
  • Liliana Zura-Bravo
  • Roberto Lemus-Mondaca
  • Javier Martinez-Monzó
  • Issis Quispe-Fuentes
  • Luis Puente
  • Karina Di Scala
Original Article

Abstract

The effects of air drying temperature on dietary fibre, texture and microstructure of the Cape gooseberry fruits during convective dehydration in the range of 50–90 ºC were investigated. The ratio of insoluble dietary fibre to soluble dietary fibre was higher than 7:1 for all dehydrated samples. At 50 ºC tissue structure damage was evidenced leading to the maximum water holding capacity (47.4 ± 2.8 g retained water/100 g water) and the lowest rehydration ratio (1.15 ± 0.06 g absorbed water/g d.m.). Texture analysis showed effects of drying temperatures on TPA parameters. Changes in microstructure tissue were also observed at the studied drying temperatures. Hot air drying technology leads not only to fruit preservation but also increases and adds value to Cape gooseberry, an asset to develop new functional products.

Keywords

Physalis peruviana Dietary fibre Texture profile analysis Rehydration properties Microstructure 

References

  1. Aguilera JM (2005) Why food microstructure? J Food Eng 67:3–1CrossRefGoogle Scholar
  2. AOAC (1990) Official method of analysis, 15th edn. Association of Official Analytical Chemists, Washington, DC, USAGoogle Scholar
  3. Betoret E, Betoret N, Vidal D, Fito P (2011) Functional foods development: Trends and technologies. Trends Food Sci Technol 22:498–508CrossRefGoogle Scholar
  4. Borchani C, Besbes S, Masmoudi M, Blecker C, Paquot M, Attia M (2011) Effect of drying methods on physico-chemical and antioxidant properties of date fibre concentrates. Food Chem 125:1194–1201CrossRefGoogle Scholar
  5. Borchani C, Besbes S, Masmoudi M, Ali Bouaziz M, Blecker C, Attia H (2012) Influence of Oven-Drying Temperature on Physicochemical and Functional Properties of Date Fibre Concentrates. Food and Bioprocess Technology. Food Bioprocess Technol 5(5):1541–1551.Google Scholar
  6. Chiarini F, Barbosa G (2007) Anatomycal studies of different fruit types in Argentine species of Solanum Subgen. Leptostumonun (Solanaceae). An Jardín Bot Madrid 64:165–175Google Scholar
  7. Chong C, Law C (2010) Drying of Exotic Fruits. In: Jangam SV, Law CL, Mujumdar AS (eds) Vegetables and Fruits. Volume 2, (ISBN - 978-981-08-7985-3, Published in Singapore, pp 1-42.Google Scholar
  8. Di Scala K, Vega-Gálvez A, Uribe E, Oyanadel R, Miranda M, Vergara J, Quispe I, Lemus-Mondaca R (2011) Changes of quality characteristics of pepino fruit (Solanum muricatum Ait) during convective drying. Int J Food Sci Technol 46:746–753CrossRefGoogle Scholar
  9. Doymaz I (2008) Convective drying kinetics of strawberry. Chem Eng Proc 47:914–919CrossRefGoogle Scholar
  10. Doymaz I, Ismail O (2011) Drying characteristics of sweet cherry. Food Bioprod Proc 89:31–38CrossRefGoogle Scholar
  11. Garau MC, Simal S, Rossello C, Femenia A (2007) Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chem 104:1014–1024CrossRefGoogle Scholar
  12. Garcia OE, Infante B, Rivera CJ (2010) Comparison of dietary fibre values between two varieties of cawpea (Vigna UnguiculataL Walp) of Venezuela, using chemical and enzymatic gravimetric methods. Rev Chilean Nutri 37:455–460CrossRefGoogle Scholar
  13. Hassanien MFR (2011) Physalis Peruviana: A rich Source of Bioactive Phytochemicals for functional Foods and Pharmaceutical. Food Rev Int 27(3):259–273CrossRefGoogle Scholar
  14. Heredia A, Barrera C, Andrés A (2007) Drying of cherry tomato by a combination of different dehydration techniques. Comparison of kinetics and other related properties. J Food Eng 80:111–118.Google Scholar
  15. Karabulut I, Hayaloglu AA, Yildirim H (2007) Thin-layer drying characteristics of Kurut, a Turkish dried dairy by-product. Int J Food Sci Technol 42:1080–1086CrossRefGoogle Scholar
  16. Kauffmann SFM, Palzer S (2011) Food structure engineering for nutrition, health and wellness. Proc Food Sci 1:1479–1486CrossRefGoogle Scholar
  17. Kaymak-Ertekin F (2002) Drying and rehydrating kinetics of green and red peppers. J Food Sci 67(1):168–175CrossRefGoogle Scholar
  18. Krokida MK, Maroulis ZB (2001) Structural properties of dehydrated products during rehydration. Int J Food Sci Technol 36:529–538CrossRefGoogle Scholar
  19. Krokida MK, Philippopoulos C (2005) Rehydration of Dehydrated Foods. Drying Technol 23:799–830CrossRefGoogle Scholar
  20. Lewicki P, Pawlak G (2005) Effect of Drying on Microstructure of Plant Tissue. Drying Technol 21:657–683CrossRefGoogle Scholar
  21. Li L, Wang Z, Hu X, Wu J, Liao X, Chen F, Zhao G (2010) Drying effects of two air-drying shelters in a pilot test on sultana grapes. J Food Proc Eng 33(1):162–178CrossRefGoogle Scholar
  22. López J, Uribe E, Vega-Gálvez A, Miranda M, Vergara J, González E, Di Scala K (2009) Effect of Air Temperature on Drying Kinetics, Vitamin C, Antioxidant Activity, Total Phenolic Content, Non-enzymatic Browning and Firmness of Blueberries Variety O´Neil. Food Bioproc Technol 3(5):772–777CrossRefGoogle Scholar
  23. Martínez R, Torres P, Meneses M, Figueroa J, Pérez-Alvarez J, Viuda-Martos M (2012) Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chem 135:1520–1526CrossRefGoogle Scholar
  24. Miranda M, Vega-Gálvez A, García P, Di Scala K, Shi J, Xue S, Uribe E (2010) Effect of Temperature on Structural Properties of Aloe vera (Aloe barbadensis Miller) Gel and Weibull Distribution for Modelling Drying Process. Food Bioprod Proc 88(2–3):138–144CrossRefGoogle Scholar
  25. Oliveira EG, Rosa GS, Moraes MA, Pinto LAA (2008) Phycocyanin content of spirulina platensis dried in spouted bed and thin layer. J Food Proc Eng 31(1):34–50CrossRefGoogle Scholar
  26. Peerajit P, Chiewchan N, Devahastin S (2012) Effects of pretreatment methods on health-related functional properties of high dietary fibre powder from lime residues. Food Chem 132:1891–1898CrossRefGoogle Scholar
  27. Pinto M, Galvez Ranilla L, Apostolidis E, Lajolo FM, Genovese MI, Shetty K (2009) Evaluation of Antihyperglycemia and Antihypertension Potential of Native Peruvian Fruits Using In Vitro Models. J Med Food 12(2):278–291CrossRefGoogle Scholar
  28. Puente LA, Pinto-Muñoz CA, Castro ES, Cortés M (2011) Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Res Int 44(7):1733–1740CrossRefGoogle Scholar
  29. Rahman MS, Al-farsi S (2005) Instrumental texture profile analysis (TPA) of date flesh as a function of moisture content. J Food Eng 66:505–511CrossRefGoogle Scholar
  30. Ramadan MF, Morsel J (2003) Oil Goldenberry (Physalis peruviana L.). J Agric Food Chem 51:969–974CrossRefGoogle Scholar
  31. Ramulu P, Rao PU (2003) Total, insoluble and soluble dietary fiber contents of Indian fruits. J Food Comp Anal 16:677–685CrossRefGoogle Scholar
  32. Salazar MR, Jones JW, Chaves B, Cooman A (2008) A model for the potential production and dry matter distribution of Cape gooseberry (Physalis peruviana L.). Sci Hort 115:142–148CrossRefGoogle Scholar
  33. Trinchero GD, Sozzi GO, Cerri AM, Vilella F, Fraschina AA (1999) Ripening-related changes in ethylene production, respiration rate and cell-wall enzyme activity in goldenberry (Physalis peruviana L.), a solanaceous species. Post Biol Technol 16:139–145CrossRefGoogle Scholar
  34. Uribe E, Vega-Gálvez A, Di Scala K, Oyanadel R, Saavedra J, Miranda M (2009) Characteristics of Convective Drying of Pepino Fruit (Solanum muricatum Ait.): Application Weibull Distribution. Food Bioprocess Technol 4(8):1349–1356CrossRefGoogle Scholar
  35. Vega-Gálvez A, Ah-hen K, Chacana M, Martínez-Monzó J, García-Segovia P, Lemus-Mondaca R, Di Scala K (2011) Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chem 132(1):51–59CrossRefGoogle Scholar
  36. Vega-Gálvez A, Puente-Diaz L, Lemus-Mondaca R, Miranda M, Torres MJ (2012) Mathematical modelling of thin-layer drying of Cape Gooseberry (Physalis peru viana L.). J Food Proc Preserv. doi:10.1111/jfpp.12024 Google Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2013

Authors and Affiliations

  • Antonio Vega-Gálvez
    • 1
    • 2
  • Liliana Zura-Bravo
    • 1
  • Roberto Lemus-Mondaca
    • 1
  • Javier Martinez-Monzó
    • 3
  • Issis Quispe-Fuentes
    • 1
  • Luis Puente
    • 4
  • Karina Di Scala
    • 5
    • 6
  1. 1.Department of Food EngineeringUniversidad de La SerenaLa SerenaChile
  2. 2.Centro de Estudios Avanzados en Zonas Áridas (CEAZA)Universidad de La SerenaLa SerenaChile
  3. 3.Department of Food TechnologyUniversidad Politécnica de ValenciaValenciaSpain
  4. 4.Departamento de Ciencia de los Alimentos y Tecnología QuímicaUniversidad de ChileSantiagoChile
  5. 5.Food Engineering Research Group. Facultad de IngenieríaUniversidad Nacional de Mar del PlataMar del PlataArgentina
  6. 6.CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas)Buenos AiresArgentina

Personalised recommendations