Journal of Food Science and Technology

, Volume 51, Issue 12, pp 3680–3690

Preparation of water-soluble melanin from squid ink using ultrasound-assisted degradation and its anti-oxidant activity

  • Xin Guo
  • Shiguo Chen
  • Yaqin Hu
  • Guoyun Li
  • Ningbo Liao
  • Xingqian Ye
  • Donghong Liu
  • Changhu Xue
Original Article

Abstract

Water-soluble squid melanin fractions were firstly prepared using ultrasound-assistant degradation method under alkaline condition, which is optimized by response surface methodology. The processing melanin fractions were divided into different molecular weight (Mw) fractions by membrane separation (below 10 kDa, among 10–50 kDa and over 50 kDa). The AFM image and particle-size analysis showed monomer units of the melanin were destroyed, and huge polymers were degraded into smaller soluble particles after ultrasound. While, UV, IR and solid 13C NMR spectra indicated that the basic structure of melanin fraction was still retained after ultrasound process. Further analysis showed soluble melanin fractions obtained in 0.5 and 1 M NaOH, with Mw above 10 kDa exhibited much higher in vitro antioxidant potency. The IC50 of these fractions (IC50 among 19-80 μg) on scavenging O2∙¯ is more efficient than carnosine (IC50 = 355 μg/ml.), a commercialized antioxidant. They (IC50 mong 115–180 μg/ml) are as efficient as carnosine (IC50 = 110 μg/ml) on scavenging ∙OH. Our research has reported a novel method for preparation of water-soluble melanin fractions from squid ink, which could be a promising free radical scavenger from nature resource.

Keywords

Squid ink melanin Water-soluble Ultrasound Structure, anti-oxidation 

References

  1. Adhyaru BB, Akhmedov NG, Katritzky AR, Bowers CR (2003) Solid-state cross-polarization magic angle spinning 13C and 15N NMR characterization of Sepiamelanin and Sepiamelanin free acid and human hair melanin in comparison with several model compounds. Magn Reson Chem 41:466–474CrossRefGoogle Scholar
  2. Basedow AM, Ebert KH (1977) Ultrasonic degradation of polymers in solution. Phys Chem Adv Polym Sci 22:83–148CrossRefGoogle Scholar
  3. Casadevall A, Rosas AL, Nosanchuk JD (2000) Melanin and virulence in cryptococcus neoformans. Curr Opin Microbiol 3(4):354–358CrossRefGoogle Scholar
  4. Centeno SA, Shamir J (2008) Surface enhanced Raman scattering (SERS) and FTIR characterization of the sepia melanin pigment used in works of art. J Mol Struct 873(1–3):149–159CrossRefGoogle Scholar
  5. Chen S, Xue C, Wang J, Feng H, Wang Y, Ma Q, Wang D (2009) Adsorption of Pb (II) and Cd (II) by squid Ommastrephes bartrami Melanin. Bioinorg Chem Appl 2009:1–7CrossRefGoogle Scholar
  6. Chen S, Xu J, Xue C, Dong P, Sheng W, Yu G, Chai W (2008) Sequence determination of a non-sulfated glycosaminoglycan-like polysaccharide from melanin-free ink of the squid Ommastrephes bartrami by negative-ion electrospray tandem mass spectrometry and NMR spectroscopy. Glycoconj J 25:481–492CrossRefGoogle Scholar
  7. Czechowska-Biskupa R, Rokita B, Lotfy S, Ulanski P, Rosiak JM (2005) Degradation of chitosan and starch by 360-kHz ultrasound. Carbohydr Polym 60(2):175–184CrossRefGoogle Scholar
  8. Das KC, Abramson MB, Katzman R (1978) Neuronal pigments: spectroscopic characterization of human brain melanin. J Neurochem 30(3):601–606CrossRefGoogle Scholar
  9. Entezari MH, Pétrier C (2004) A combination of ultrasound and oxidative enzyme: sono-biodegradation of phenol. Appl Catal Environ 53(4):257–263CrossRefGoogle Scholar
  10. Harki E, Talou T, Dargent R (1997) Purification, characterisation and analysis of melanin extracted from Tuber melanosporum Vitt. Food Chem 58(1–2):69–73CrossRefGoogle Scholar
  11. Jalmi P, Bodke P, Wahidullah S, Raghukumar S (2012) The fungus Gliocephalotrichum simplex as a source of abundant, extracellular melanin for biotechnological applications. World J Microbiol Biotechnol 28(2):505–512CrossRefGoogle Scholar
  12. Kim S, Kim S, Song KB (2003) Partial purification and characterization of an angiotensin-converting enzyme inhibitor from squid ink. Agric Chem Biotechnol 46(3):122–123Google Scholar
  13. Knicker H, Almendros G, Gonzales-Vila FJ, Ludemann HD, Martin F (1995) 13C- and 15N NMR analysis of some fungal melanins in comparison with soil organic matter. Org Geochem 23:1023–1028CrossRefGoogle Scholar
  14. Kollias N, Sayre R, Zeise L (1991) New trends in photobiology: Photoprotection by melanin. J Photochem Photobiol B Biol 9(2):135–160CrossRefGoogle Scholar
  15. Kou X, Wang C (2010) Study on the degradation of chitosan with oxidant under the ultrasonic assistance. Texile auxiliaries 11:24–27 (in Chinese)Google Scholar
  16. Lin J (2003) Determination of active oxygen species based on chemiluminescence methods. Acta Sci Circumstantiae 23:230–238 (in Chinese)Google Scholar
  17. Liu H, Bao J, Du Y, Zhou X, Kennedy JF (2006) Effect of ultrasonic treatment on the biochemphysical properties of chitosan. Carbohydr Polym 64(4):553–559CrossRefGoogle Scholar
  18. Liu Y, Hong L, Wakamatsu K, Ito S, Adhyaru B, Cheng C, Bowers C, Simon JD (2004) Ion-exchange and adsorption of Fe(III) by sepia melanin. Pigment Cell Res 17:262–269CrossRefGoogle Scholar
  19. Liu Y, Hong L, Wakamatsu K, Ito S, Adhyaru B, Cheng C, Bowers C, Simon JD (2005) Comparison of structural and chemical properties of black and red human hair melanosomes. Photochem Photobiol 81:135–144CrossRefGoogle Scholar
  20. Liu Y, Simon JD (2003a) Isolation and biophysical studies of natural eumelanins: applications of imaging technologies and ultrafast spectroscopy. Pigment Cell Res 16:606–618CrossRefGoogle Scholar
  21. Liu Y, Simon JD (2003b) The effect of preparation procedures on the morphology of melanin from the ink sac of sepia officinalis. Pigment Cell Res 16(6):606–618CrossRefGoogle Scholar
  22. Lorimer JP, Mason TJ, Cuthbert TC, Brookfield EA (1995) Effect of ultrasound on the degradation of aqueous native dextran. Ultrason Sonochem 2(1):55–57CrossRefGoogle Scholar
  23. Magarelli M, Passamonti P, Renieri C (2010) Purification, characterization and analysis of sepia melanin from commercial sepia ink (Sepia Officinalis). Rev CES Med Vet Zootec 5(2):18–28Google Scholar
  24. Menon IA, Haberman HF (1977) Mechanisms of action of melanins. Br J Dermatol 97(1):109–112CrossRefGoogle Scholar
  25. Meredith P, Sarna T (2006) The physical and chemical properties of eumelanin. Pigment Cell Res 19:572–594CrossRefGoogle Scholar
  26. Montefiori DC, Zhou JY (1991) Selective antiviral activity of synthetic and soluble L-tyrosine and L-dopa melanin against human immunodeficiency virus in vitro. Antivir Res 15:11–25CrossRefGoogle Scholar
  27. Moscaa L, Blarzinoa C, Cocciaa R (1998) Melanins from tetrahydroisoquinolines: spectroscopic characteristics, scavenging activity and redox transfer properties. Free Radic Biol Med 24:161–167CrossRefGoogle Scholar
  28. Naraoka T, Uchisawa H, Mori H, Matsue H, Chiba S, Kimura A (2003) Purification, characterization and molecular cloning of tyrosinase from the cephalopod mollusk, Illex Argentinus. Eur J Biochem 270:4026–4038CrossRefGoogle Scholar
  29. Riley PA (1997) Melanin. Int J Biochem Cell Biol 29:1235–1239CrossRefGoogle Scholar
  30. Różanowska M, Sarna T, Land EJ, Truscott G (1999) Free radical scavenging properties of melanin: interaction of eu- and pheo-melanin models with reducing and oxidising radicals. Free Radic Biol Med 26:518–525CrossRefGoogle Scholar
  31. Selvakumar P, Rajasekar S, Periasamy K, Raaman N (2008) Isolation and characterization of melanin pigment from Pleurotus cystidiosus (telomorph of Antromycopsis macrocarpa). World J Microbiol Biotechnoly 24(10):2125–2131CrossRefGoogle Scholar
  32. Stainsack J, Mangrich AS, Maia CMBF, Machado VG, Santsos JCP, Nakagaki S (2003) Spectroscopic investigation of hard and soft metal binding sites in synthetic melanin. Inorg Chim Acta 356(3):243–248CrossRefGoogle Scholar
  33. Szpoganicz B, Gidanian S, Kong P (2002) Metal binding by melanins: studies of colloidal dihydroxyindole-melanin, and its complexation by Cu (2+) and Zn (2+) ions. J Inorg Biochem 89:45–53CrossRefGoogle Scholar
  34. Tian S, Garcia-Rivera J, Yan B, Casadevall, Stark RE (2003) Unlocking the Molecular Structure of Fungal Melanin Using 13C Biosynthetic Labeling and Solid-State NMR. Biochemistry 42(27):8105–8109CrossRefGoogle Scholar
  35. Takaya Y (2000) Biological activities of natural resources around us are now in the limelight. Yakugaku Zasshi 120:1075–1089Google Scholar
  36. Tu Y, Sun Y, Tian Y, Xie M, Chen J (2009) Physicochemical characterisation and antioxidant activity of melanin from the muscles of Taihe Black-bone silky fowl (Gallus gallus domesticus Brisson). Food Chem 114(4):1345–1350CrossRefGoogle Scholar
  37. Vilkhu K, Mawson R, Simons L, Bates D (2008) Applications and opportunities for ultrasound assisted extraction in the food industry-A review. Innovat Food Sci Emerg Tech 9(2):161–169CrossRefGoogle Scholar
  38. Wang H, Pan Y, Tang X, Huang Z (2006) Isolation and characterization of melanin from Osmanthus fragrans’ seeds. LWT-Food Sci Tech Res 39(5):496–502CrossRefGoogle Scholar
  39. Zajac GW, Gallas JM, Cheng J, Eisner M, Moss SC, Alvarado-Swaisgood AE (1994) The fundamental unit of synthetic melanin: a verification by tunnelingmicroscopy of x-ray scatteringresults. Biochim Biophys Acta 1199:271–278CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2013

Authors and Affiliations

  • Xin Guo
    • 1
  • Shiguo Chen
    • 1
  • Yaqin Hu
    • 1
  • Guoyun Li
    • 2
  • Ningbo Liao
    • 1
  • Xingqian Ye
    • 1
  • Donghong Liu
    • 1
  • Changhu Xue
    • 2
  1. 1.College of Biosystem Engineering and Food ScienceZhejiang UniversityHangzhouChina
  2. 2.College of Food Science and TechnologyOcean University of ChinaQingdaoChina

Personalised recommendations