Advertisement

Journal of the Indian Academy of Wood Science

, Volume 16, Issue 2, pp 155–161 | Cite as

Kinetic of cracks propagation related to the growth stress of clonal Eucalyptus wood

  • Mahyoub AmerEmail author
  • Bousselham Kabouchi
  • Mohamed Rahouti
  • Abderrahim Famiri
  • Abdelwahed Fidah
  • Mohsine Ziani
  • Salah El Alami
Original Article
  • 24 Downloads

Abstract

The growth stress released during felling trees of Eucalyptus sp. and after cutting into logs causes fissure and cracks propagation into the log sections. Evolution and velocity of cracks of woody discs of Eucalyptus grandis and E. camaldulensis clones were investigated. The first set of observations and measurements were taken in 2 h after discs crosscutting. All wood discs presented two cracks developed at opposite directions in the transversal plane RT. The discs of E. grandis have larger values for the length and velocity of cracks and energy liberated than those of E. camaldulensis discs. The second set of observations and measurements were done after 2 weeks of discs cutting. In each disc of E. grandis, the two cracks increased towards the periphery. A third crack was appeared in all discs of E. camaldulensis and extended in a perpendicular direction along the two previous cracks. The cracks size increased, and some of them reach the discs periphery with their side opening. In this stage, the wood discs of E. grandis present lower values for splitting indicators than those of E. camaldulensis wood. So, the good knowledge of the cracks evolution related to the growth stress may help us to take the suitable procedures to reduce their influence in this type of wood during cutting, storage and first transformation. In addition, by these findings completed by further researches, mathematical models can be developed in order to increase sawing yield and to avoid splits on woody boards.

Keywords

Clonal eucalyptus Wood Cracks propagation Energy liberation Splitting indicators Growth stress 

Notes

Acknowledgements

This work is supported by the Forest Research Center in Rabat (High Commission for Waters, Forests and Fight against Desertification) with a collaboration of Faculty of Sciences (Mohammed V University in Rabat), Morocco.

References

  1. Amer M, Kabouchi B, Rahouti M, Famiri A, Fidah A (2017) Determination of growth stresses indicator, moisture profiles and basic density of clonal eucalyptus wood. J Indian Acad Wood Sci 14:91–98CrossRefGoogle Scholar
  2. Baillères H, Chanson B, Fournier M, Tollier MT, Monties B (1994) Structure, composition chimique et retraits de maturation du bois chez les clones d’Eucalyptus. Ann Sci For 52:157–172CrossRefGoogle Scholar
  3. Berg S, Sandberg D, Ekevad M, Vaziri M (2015) Crack influence on load-bearing capacity of glued laminated timber using extended finite element modelling. Wood Mater Sci Eng 10(4):335–343CrossRefGoogle Scholar
  4. Bodnár F, Minárik M (2015) Coniform-shape tool for splitting of wooden logs. Res Agric Eng 61(1):29–34CrossRefGoogle Scholar
  5. Chauhan SS, Walker J (2004) Relationships between longitudinal growth strain and some wood properties in Eucalyptus nitens. Aust For 67(4):254–260CrossRefGoogle Scholar
  6. Daya A, Azari Z (2014) Study of growth stress and resistance of the cracking of the wood of grown Eucalypti and Quercus Ilex. Int J Eng Res Technol 3(5):398–402Google Scholar
  7. Diakhate M, Bastidas-Arteaga E, Pitti RM, Schoefs F (2017) Cluster analysis of acoustic emission activity within wood material: towards a real-time monitoring of crack tip propagation. Eng Fract Mech 180:254–267CrossRefGoogle Scholar
  8. Dourado NMM, De Moura MFSF, Morais JJL, Silva MAL (2010) Estimate of resistance-curve in wood through the double cantilever beam test. Holzforschung 64:119–126CrossRefGoogle Scholar
  9. El Alami S (2013) Contribution a` la caractérisation physique et mécanique et la valorisation par le séchage du bois de la forêt Marocaine: cas des eucalyptus et de la loupe de thuya. PhD Thesis, Université Mohammed V, RabatGoogle Scholar
  10. Elke M, Raquel M, Miguel E, Thierry D, Pierre L (2016) Influence of cracks on the stiffness of timber structural elements. World conference on timber engineering (WCTE) (2016) 22–25 August 2016, Vienne, AustriaGoogle Scholar
  11. Famiri A (1996) Contribution à l’étude des propriétés physiques et physico-chimiques du bois de l’eucalyptus, Cas du E. grandis x E. camaldulensis. PhD Thesis, Université Mohammed V. Faculté des Sciences, RabatGoogle Scholar
  12. Famiri A, Kabouchi B, Hakam A, Grill J (2001) Sawing and growth stresses in green wood of eucalyptus E. grandis and E. gomphocephala. For Sci Bulg 1/2:45–50Google Scholar
  13. Franke S, Franke B, Harte AM (2015) Failure modes and reinforcement techniques for timber beams: state of the art. Constr Build Mater 97:2–13CrossRefGoogle Scholar
  14. Grill J, Jullien D, Bardet S, Yamamoto H (2017) Tree growth stress and related problems. J Wood Sci 63:411–432CrossRefGoogle Scholar
  15. Hakam A, Dikrallah A, Kabouchi B, Famiri A, Walia-Wllah M, El Abid A (2005) Eucalyptus wood drying. J Phys IV Fr 123:327–330CrossRefGoogle Scholar
  16. Jullien D, Laghdir A, Gril J (2003) Modelling log-end cracks due to growth stresses: calculation of the elastic energy release rate. Holzforschung 57:407–414CrossRefGoogle Scholar
  17. Kennouche S, Zerizer A, Marchal R, Aknouche A, Daoui A (2011) Resistance to crack propagation of Algerian wood. Leonardo J Sci 19:69–80Google Scholar
  18. Kumar A, Murthy AR, Iyer NR (2005) Crack growth prediction under variable amplitude loading considering elastic–plastic stress field ahead of crack tip. Sci Direct Procedia Eng 86:645–652CrossRefGoogle Scholar
  19. Lengliné O, Toussaint R, Schmittbuhl J (2011) Average crack front velocity during subcritical fracture propagation in a heterogeneous medium. 1–12Google Scholar
  20. Maziri A, ELGhorba M, Chergui M, Famiri A, Ziani M (2010) Relation entre les contraintes de croissance et la fissilite: Application aux fentes d'abattage d'eucalyptus camaldulensis. Sci Technol B 32:29–34Google Scholar
  21. Meite M, Laanaa A, Famiri A, Yeznasni A, Chergui M, El Ghorba M, Ziani M (2007) Etude de l'influence des propriétés physiques sur le comportement mécanique des bois de pin maritime et de pin d'alep -en vue de l'application à l'énergie éolienne. Revue des Energies Renouvelables CER 07 Oujda 61–65Google Scholar
  22. Ngargueudedjim K, Ngarmaim N, Bassa B, Allarabeye N, Annouar D, Abdel-rahim M, Soh Fotsing B, Fogue M (2015) Caractéristiques physiques du bois Rônier (Borassus aethiopum Mart., Arecaceae) du Tchad /Afrique cenrale. Int J Innov Appl Stud 13:553–560Google Scholar
  23. Okuyama T, Doldán J, Yamamoto H, Ona T (2004) Heart splitting at crosscutting of eucalypt logs. J. Wood Sci. 50:1–6CrossRefGoogle Scholar
  24. Phan N A (2005) Simulation of time-dependent crack propagation in a quasi brittle material under relative humidity variations based on cohesive zone approach: application to wood. PhD Thesis, Université de BordeauxGoogle Scholar
  25. Roylance D (2001) Introduction to fracture mechanics. Massachusetts Institute of Technology, CambridgeGoogle Scholar
  26. Stanzl-Tschegg SE, Navi P (2009) Fracture behaviour of wood and its composites: a review. Holzforschung 63:139–149Google Scholar
  27. Vega M, Hamilton MG, Blackburn DP, McGavin RL, Baillères H, Potts BM (2016) Influence of site, storage and steaming on Eucalyptus nitens log-end splitting. Ann For Sci 73:257–266CrossRefGoogle Scholar

Copyright information

© Indian Academy of Wood Science 2019

Authors and Affiliations

  • Mahyoub Amer
    • 1
    Email author
  • Bousselham Kabouchi
    • 1
  • Mohamed Rahouti
    • 2
  • Abderrahim Famiri
    • 3
  • Abdelwahed Fidah
    • 3
  • Mohsine Ziani
    • 4
  • Salah El Alami
    • 1
  1. 1.Laboratory of Condensed Matter and Interdisciplinary Sciences, Faculty of SciencesMohammed V UniversityRabatMorocco
  2. 2.Center of Plant and Microbial Biotechnologies, Biodiversity and Environment, Faculty of SciencesMohammed V UniversityRabatMorocco
  3. 3.Physics and Mechanics of Wood LaboratoryResearch Center of ForestryRabatMorocco
  4. 4.National Institute of Archeological Sciences and PatrimonyRabatMorocco

Personalised recommendations