Journal of the Indian Academy of Wood Science

, Volume 15, Issue 2, pp 162–171 | Cite as

Understanding the natural durability of some African tropical heartwoods toward Pycnoporus sanguineus and Antrodia sp.: lignin structure and cellulose morphology control

  • Rodrigue Safou TchiamaEmail author
  • Patrice Soulounganga
  • Péguy Starlin Engozogho Anris
  • Arsène Bikoro Bi Athomo
  • Timoléon Andzi Barhé
  • Bernard De Jeso
  • Bertrand Charrier
  • Aristide Gervais Akagah
Original Article


The natural durability of the heartwoods from Testulea gabonensis Pellgr. (T. gabonensis), Julbernardia pellegriniana (J. pellegriniana), Aucoumea klaineana Pierre (A. klaineana), and Tieghemella africana Pierre (T. africana) widely used for windows, door frames, frameworks, closets, cupboards and plywood in the Congo Basin or other countries in the world were studied. The samples were exposed to Pycnoporus sanguineus (P. sanguineus) and Antrodia sp. Factors such as extracts toxicity, lignin syringyl to guaiacyl (S/G) ratio, cellulose crystalline, and fibers morphology which control the resistance of the wood toward white- and brown-rot fungi were investigated. Unextracted woods displayed a strong natural durability against P. sanguineus compared to Antrodia sp., except for A. klaineana which didn’t show significant difference concerning its durability against the white- or the brown-rot fungus. Unextracted heartwoods from T. gabonensis and T. africana were very durable against P. sanguineus; they contain extracts with strong toxicity toward that white-rot fungus. However, A. klaineana and J. pellegriniana heartwoods were moderately resistant to P. sanguineus. For the extracted heartwoods, the lowest mass loss against P. sanguineus was achieved by T. gabonensis heartwood which was the richest in G type units. The highest mass loss was obtained from the three other heartwoods displaying the highest content on S units. Heartwoods with high crystallinity index and long cellulose fibers were more resistant to Antrodia sp. compared to A. klaineana which displayed the shortest cellulose fibers (624 μm) and the lowest crystallinity index (59%).


Tropical hardwoods Durability Lignin Cellulose Antrodia sp. P. sanguineus 



This research was possible as a result of the AUF (Agence Universitaire de la Francophone) fellowship program. We would like to thank USTM (Université des Sciences et Techniques de Masuku of Gabon) for his funding and all supports he brought to this research program. The LCPO (Laboratoire de Chimie des Polymères Organiques) of Bordeaux 1 University and Xylomat of the University of Pau and Pays de l’Adour are thanked for the scientific support they brought to this research program.

Authors’ contribution

Rodrigue SAFOU-TCHIAMA was the principal investigator of the subject. He acted as group leading of a research program dealing with the natural durability and molecular structure of lignocellulosic polymers of tropical hardwoods in the LASNSOM (USTM) and the LaReVa (ENSET). Patrice SOULOUNGANGA contributed actively as wood scientist to criticize and correct the final manuscript. Péguy Starlin ENGOZOGHO made the antifungal test of A. klaineana wood against C. versicolor. Timoléon Andzi Barhé, Bernard De Jeso, Bertrand Charrier and Aristide Gervais Akagah acted as scientific directors.

Compliance with ethical standards

Ethical standards

Norme NF-EN 113 “Wood preservatives: determination of the toxic effect values against wood destroying basidiomycetes cultured on agar medium”, December 1986, 23 p.


  1. Amusant N, Fournier M, Beauchene J (2008) Colour and decay resistance and its relationships in Eperua grandiflora. Ann For Sci 65:806–8011. CrossRefGoogle Scholar
  2. Arrêté N°000117/PR/MEFEPEPN du 1er Mars 2003 Fixant les diamètres minima d’exploitabilité administratifs des bois d’œuvre. Ministre de l’Economie Forestière, des Eaux, de la Pêche, chargé de l’Environnement et de la Protection de la Nature. GabonGoogle Scholar
  3. ATIBT (2000) Association Internationales Techniques des Bois Tropicaux. Atlas des bois tropicaux, Tome 1-Afrique, p 208. ATIBT, Nogent-sur-MarneGoogle Scholar
  4. Berlin A, Gilkes N, Kurabi A, Bura R, Tu MB, Kilburn D, Saddler J (2005) Weak lignin-rinding enzymes—a novel approach to improve activity of cellulases for hydrolysis of lignocellulosics. Appl Biochem Biotechnol 121:163–170. CrossRefPubMedGoogle Scholar
  5. Bernardis AC, Popoff O (2009) Durability of Pinus elliottii wood impregnated with Quebracho colorado (Schinopsis Balansae) bio-protectives extracts and CCA. Maderas: Ciencia y Tecnol 11(2):107–115Google Scholar
  6. Choi YS, Kim JJ, Yoshimura T, Kim GH (2014) Oxalic acid production and metal removal during fungal degradation of CCA-treated wood in nutrient culture. Holzforschung 68(6):685–691. CrossRefGoogle Scholar
  7. Code Forestier, Gabon (2001) Loi n°16-01 du 31 décembre 2001. Accessed 27 Oct 2018
  8. Eaton and Hale (1993) Wood: decay, pests and protection. Chapman & Hall, London, p 546Google Scholar
  9. Engozogho Anris PS (2016) Composition chimique et structure moléculaire des extraits d’écorce et de bois d’Aucoumea klaineana Pierre. Mémoire de Master Recherche en Sciences du Bois. Ecole Nationale des Eaux et Forêts (Gabon)/Université de Pau et des Pays de l’Adour (France), p 73Google Scholar
  10. Gabon Economie (2016) Transformation du bois: Atout majeur du Gabon pour la diversification de l’économie. Accessed 18 October 2018
  11. Geiger BJJ-P, Rio B, Nicolaen M, Nandris DD (1986) Biodegradation of Hevea brasiliensis wood by Rigidoporus lignosus and Phellinus noxius. Eur J For Path 16(3):147–159CrossRefGoogle Scholar
  12. Golpayegani A (2011) Caractérisation du bois du Murier blanc (Morus alba L.) en référence à son utilisation dans les luths Iraniens. Thèse de doctorat, Université de Montpellier 2, France, p 249Google Scholar
  13. Golpayegani AS, Thevenon MF, Bremaud I, Pourtahmasi K, Gril J (2017) Natural durability and dimensional stability of white mulberry (Morus alba L.) for Middle Eastern lutes. Madera y Bosques 23(2):193–204. CrossRefGoogle Scholar
  14. Green F III, Clausen C (2003) Copper tolerance of brown-rot fungi: time course of oxalic acid production. Int Biodet Biodeg 51:145–149. CrossRefGoogle Scholar
  15. Humar M (2013) Influence of Norway spruce and European larch heartwood ring-width on extractive content and durability. Drvna Ind 64(2):79–85CrossRefGoogle Scholar
  16. Humar M, Petric M, Pohleven F (2001) Change of the pH value of impregnated wood during exposure to wood-rotting fungi. Holz as Roh-und Werks 59:288–293. CrossRefGoogle Scholar
  17. Ichishima E, Ito Y, Takeuchi M (1985) 1,2-α-D-Mannosidase from a wood-rotting basidiomycete, Pycnoporus sanguineus. Phytochem 24(12):2835–2837. CrossRefGoogle Scholar
  18. Lal NK, Butnaru R, Simionescu C (1977) Chemical composition and analysis of wood. In: Fengel D, Wegener G (eds) Wood chemistry, ultrastructure, reactions. Walter de Gruyter, New York, pp 58–62Google Scholar
  19. Mburu F, Dumarçay S, Ste Huber F, Petrissans M, Geradin P (2007) Evaluation of thermally modified Grevillea robusta heartwood as an alternative to shortage of wood resource in Kenya: characterisation of physicochemical properties and improvement of bio-resistance. Biores Technol 98:3478–3486. CrossRefGoogle Scholar
  20. Medzegue (2007) Etude comparative des bois d’Okoumé issus des plantations et de la forêt naturelle: anatomie et durabilité naturelle. Thèse de doctorat, Université Bordeaux 1, France, p 168Google Scholar
  21. Minkué M’Eny S (2000) Chemical study of the extractive substances of Okoumé. Mémoire de Maîtrise, Université de Laval, QuebecGoogle Scholar
  22. Morris PI (1998) Understanding biodeterioration of wood in structures. Forintek Canada Corp. British Columbia Building Envelope Council. Accessed 18 October 2018Google Scholar
  23. Moxley G, Zhu ZG, Zhang YHP (2008) Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis. J Agric Food Chem 56:7885–7890. CrossRefPubMedGoogle Scholar
  24. Newman RH (1999) Estimation of the relative proportion of cellulose Iα and Iβ in wood by carbone-13 NMR spectroscopy. Holzforschung 53:335–340CrossRefGoogle Scholar
  25. Richter HG, Dallwitz MJ (2000) Commercial timbers: descriptions, illustrations, identification, and information retrieval. In English, French, German, and Spanish. Version: 4th May 2000. Accessed 18 October 2018
  26. Safou-Tchiama R, De Jéso B, Akagah AG, Sèbe G, Pétraud M (2007) A preliminary survey of the interfacial bonding of some tropical hardwoods towards succinic anhydride and 2-octen-1-yl succinic anhydride molecules: impact of lignin and carbohydrate polymers structure on the chemical reactivity. Ind Crops Prod 26(2):173–184. CrossRefGoogle Scholar
  27. Safou-Tchiama R, Ngwa Obame S, Brosse N, Soulounganga S, Andzi Barhé T (2016) Investigating the potential of Aucoumea klaineana Pierre sapwood and heartwood wastes to produce cellulosic ethanol. Afr J Biotechnol 15(46):2587–2595. CrossRefGoogle Scholar
  28. Safou-Tchiama R, Andzi Barhé T, Soulounganga P, Akagah AG, De Jeso B (2017a) A comparative study of the syringyl, guaiacyl and hydroxyl groups units distribution in some African tropical hardwoods’ lignin by Py-GC/MS and spectroscopic techniques. J Mater Env Sci 8(17):2530–2540Google Scholar
  29. Safou-Tchiama R, Andzi Barhé T, Soulounganga P, Ngwa Obame S, Mabicka Iwangou SB, Bikoro Bi Athomo A, Engozogho Anris PS, De Jeso B, Akagah AG (2017b) Chemical reactivity and supramolecular susceptibility of hardwood celluloses towards succinic anhydride. Int J Biol Chem Sci 11(6):3110–3131. CrossRefGoogle Scholar
  30. Savard J, Nicolle J, André AM (1959) Chemical analysis of tropical woods. Tome 1. Centre Technique Forestier Tropical, Nogent-sur-Manie, p 190Google Scholar
  31. Schwarze E, Engels J, Mattheck YC (2000) Fungal strategies of wood decay in trees. Springer, Berlin, p 200CrossRefGoogle Scholar
  32. Segal L, Creely JJ, Martin AE Jr, Conrad M (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 59:786–794CrossRefGoogle Scholar
  33. Sun RC, Fang JM, Tomkinson J, Hill CAS (1999) Esterification of hemicelluloses from Poplar chips in homogeneous solution of N,N-dimethylformamide/lithium chloride. J Wood Chem Technol 19:287–306. CrossRefGoogle Scholar
  34. Tappi (1988) Acid insoluble lignin in wood and pulp. In: Tappi standard method T 222 om-88. Tappi Press, Atlanta, GAGoogle Scholar
  35. Teoh YP, Mashitah MD, Salmiah U (2011) Media selection for mycelia growth, antifungal activity against wood-degrading fungi, and GC-MS study by Pycnoporus sanguineus. BioRes 6(3):2719–2731. CrossRefGoogle Scholar
  36. Tropix 7 (2012) Cirad, MontpellierGoogle Scholar
  37. Väljamäe P, Sild V, Pettersson G, Johansson G (1998) The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface erosion model. Eur J Biochem 253:469–475CrossRefGoogle Scholar
  38. Van Acker J, Militz H, Steven M (1999) The significance of accelerated laboratory testing methods determining the natural durability of wood. Holzforschung 53:449–458CrossRefGoogle Scholar
  39. Van Heerden A (2007) Assessment of wood degradation by Pycnoporus sanguineus when co-cultured with selected fungi. Thesis, University of Stellenbosch, p 19. Accessed 18 October 2018Google Scholar
  40. Welzbacher CR, Brischke C, Rapp AO, Koch S, Hofer S (2009) Performance of thermally modified timber (TMT) in outdoor application—durability, abrasion and optical appearance. Drvna Ind 60:75–82Google Scholar
  41. World Bank Group (2017) Impact de la mesure d’interdiction d’exportation des grumes sur la forêt, l’industrie du bois et l’économie du Gabon—Mars 2017. Accessed 27 Oct 2018 
  42. Wu X, An Q, Dai Y, Si J (2016) Investigating lignocelluloses in cornstalk pretreated with Trametes pubescens Cui 7571 to improve enzymatic saccharification. BioRes 11(1):2768–2783. CrossRefGoogle Scholar
  43. Zaremski A (2011) Natural protection of wood with antagonism fungi. Pro Ligno 7(1):3–14Google Scholar
  44. Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: non complexed cellulase systems. Biotechnol Bioeng 88:797–824. CrossRefPubMedGoogle Scholar

Copyright information

© Indian Academy of Wood Science 2018

Authors and Affiliations

  • Rodrigue Safou Tchiama
    • 1
    • 2
    Email author
  • Patrice Soulounganga
    • 1
    • 3
  • Péguy Starlin Engozogho Anris
    • 1
    • 4
  • Arsène Bikoro Bi Athomo
    • 1
    • 4
  • Timoléon Andzi Barhé
    • 1
    • 5
  • Bernard De Jeso
    • 6
  • Bertrand Charrier
    • 4
  • Aristide Gervais Akagah
    • 2
  1. 1.Laboratoire de Recherche et de Valorisation du Matériau Bois (LaReVa Bois)Ecole Normale Supérieure d’Enseignement TechniqueLibrevilleGabon
  2. 2.Laboratoire des Substances Naturelles et de Synthèses Organométalliques (LASNSOM), Unité de Recherche en Chimie (URChi)Université des Sciences et Techniques de MasukuFrancevilleGabon
  3. 3.Laboratoire Pluridisciplinaire des SciencesEcole Normale SupérieureLibrevilleGabon
  4. 4.XylomatMont de MarsanFrance
  5. 5.Département des Sciences Exactes. Ecole Normale Supérieure, Laboratoire de Biochimie et de Pharmacologie, de la Faculté des Sciences de la Santé.Université Marien NgouabiBrazzavilleCongo
  6. 6.Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629PessacFrance

Personalised recommendations