Advertisement

On de Finetti’s instrumentalist philosophy of probability

  • Joseph BerkovitzEmail author
Original paper in Philosophy of Probability
  • 33 Downloads

Abstract

De Finetti is one of the founding fathers of the subjective school of probability. He held that probabilities are subjective, coherent degrees of expectation, and he argued that none of the objective interpretations of probability make sense. While his theory has been influential in science and philosophy, it has encountered various objections. I argue that these objections overlook central aspects of de Finetti’s philosophy of probability and are largely unfounded. I propose a new interpretation of de Finetti’s theory that highlights these aspects and explains how they are an integral part of de Finetti’s instrumentalist philosophy of probability. I conclude by drawing an analogy between misconceptions about de Finetti’s philosophy of probability and common misconceptions about instrumentalism.

Keywords

De Finetti Subjective probability Instrumentalism Pragamtism Degrees of expectation Coherence Verifiability Consistency Operational definition Epistemic justification Pragmatic justification Accuracy of degrees of belief Degrees of belief Imprecise probabilities 

Notes

Acknowledgments

For helpful comments on previous drafts of this paper and discussions of de Finetti’s philosophy, I am very grateful to the journal’s editors-in-chief, Phyllis Illari and Federica Russo, and Holger Andreas, Colin Elliott, Franz Huber, Joel Katzav, Noah Stemeroff, and in particular Donald Gillies, Aaron Kenna and Alberto Mura. Parts of this paper were presented at the CSHPS 2010, Montreal; GRECC Colloquium, Philosophy, Universitat Autònoma de Barcelona; IHPST Workshop, University of Toronto; Israel Foundations of Physics Discussion Group, Edelstein Center, Hebrew University of Jerusalem; Serious Metaphysics Group, Philosophy, University of Cambridge; Munich Center for Mathematical Philosophy, Ludwig Maximilian University of Munich; 42nd Dubrovnik Philosophy of Science conference; IHPST Colloquium, Paris; LSE Choice Group, CPNSS, London School of Economics; Theory Workshop, Sociology, University of Toronto; Probability and Models: Instrumentalism and Pragmatism in De Finetti’s Subjectivism workshop, HPS, University of Sassari; Philosophy, University of Rome III; CSHPS 2017, Toronto; Philosophy of Science Group, CONICET, University of Buenos Aires; Colloquialism, IHPST, University of Toronto; and the Philosophy Colloquium, Department of Economics, Philosophy and Political Science, University of British Columbia, Okanagan. I would like to thank the audiences in these forums for their helpful comments and suggestions. The research for this paper was supported by SSHRC Insight and SSHRC SIG grants.

References

  1. Armendt, B. (1992). Dutch strategies for diachronic rules: When believers see the sure loss coming. In D. Hull, M. Forbes, & K. Okruhlik (Eds.), PSA 1992 (Vol. 1, pp. 217–229). East Lansing: Philosophy of Science Association.Google Scholar
  2. Armendt, B. (1993). Dutch books, additivity, and utility theory. Philosophical Topics, 21(1), 1–20.CrossRefGoogle Scholar
  3. Arrighi, C., Cantu, P., De Zan, M., & Suppes, P. (Eds.). (2010). Logic and pragmatism: Selected essays by Giovanni Vailati. Stanford: CSLI.Google Scholar
  4. Berkovitz, J. (2012). The world according to de Finetti: On de Finetti’s theory of probability and its application to quantum mechanics. In Y. ben Menachem & M. Hemmo (Eds.), Probability in physics (pp. 249–280). New York: Springer.Google Scholar
  5. Berkovitz, J. (2015). The propensity interpretation of probability: A re-evaluation. Erkenntnis, 80(suppl. 3), 629–711.CrossRefGoogle Scholar
  6. Bradley, S. (2016). Imprecise probabilities. The Stanford Encyclopaedia of Philosophy (winter 2016 edition), E. N. Zalta (Ed.). URL https://plato.stanford.edu/entries/imprecise-probabilities/.
  7. Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly Weather Review, 78(1), 1–3.CrossRefGoogle Scholar
  8. Briggs, R. (2009). Distorted reflection. Philosophical Review, 118(1), 59–85.CrossRefGoogle Scholar
  9. Bunge, M. (2012). Evaluating philosophies. Boston Studies in the Philosophy and History of Science, Vol. 295. New York: Springer.Google Scholar
  10. Christensen, D. (1991). Clever bookies and coherent beliefs. Philosophical Review, 100(2), 229–247.CrossRefGoogle Scholar
  11. Christensen, D. (1996). Dutch-Book arguments depragmatized: Epistemic consistency for partial believers. Journal of Philosophy, 93(9), 450–479.CrossRefGoogle Scholar
  12. Christensen, D. (2004). Putting logic in its place. Oxford: Oxford University Press.CrossRefGoogle Scholar
  13. Dawid, P. A., & Galavotti, M. C. (2009). De Finetti’s subjectivism, objective probability, and the empirical validation of probability assessments. In M. C. Galavotti (Ed.), Bruno de Finetti: Radical probabilist (pp. 97–114). London: College Publications.Google Scholar
  14. De Finetti, B. (1937/1980). Foresight: Its logical laws, its subjective sources (translated by H. E. Kyburg). In H. E. Kyburg & H. E. Smokler (Eds.), Studies in subjective probability (2nd ed., pp. 53–118). Huntington: Robert E. Kreiger Publishing Co.Google Scholar
  15. De Finetti, B. (1957). L’informazione, il ragionamento, l’inconscio nei rapporti con la previsione. L’industria, 2, 186–210.Google Scholar
  16. De Finetti, B. (1970). Logical foundations and measurement of subjective probability. Acta Psychologica, 34(2/3), 129–145.CrossRefGoogle Scholar
  17. De Finetti, B. (1972). Probability, induction and statistics: The art of guessing. New York: Wiley.Google Scholar
  18. De Finetti, B. (1974a). Theory of probability: A critical treatment (Vol. 1). New York: Wiley.Google Scholar
  19. De Finetti, B. (1974b). Theory of probability: A critical treatment (Vol. 2). New York: Wiley.Google Scholar
  20. De Finetti, B. (2008). Philosophical lectures on probability. Collected, edited and annotated by A. Mura with an introductory essay by M. C. Galavotti, translated by H. Hosni. New York: Springer.Google Scholar
  21. De Finetti, B., & Savage, L. J. (1962). Sul modo di scegliere le probabilità iniziali. Biblioteca del Metron, Serie C, 1, 81–154.Google Scholar
  22. Diaconis, P. (1977). Finite forms of de Finetti’s theorem on exchangeability. Synthese, 36(2), 271–281.CrossRefGoogle Scholar
  23. Diaconis, P. (1988). Recent progress on de Finetti’s notions of exchangeability. In J. M. Bernardo, M. H. DeGroot, D. V. Lindley, & A. F. M. Smith (Eds.), Bayesian Statistics (Vol. 3, pp. 111–125). Oxford: Oxford University Press.Google Scholar
  24. Doob, J. L. (1971). What is a martingale? American Mathematical Monthly, 78(5), 451–463.CrossRefGoogle Scholar
  25. Duhem, P. (1893/1996). Physics and metaphysics. In R. Ariew & P. Barker (eds. and trans.), Pierre Duhem: Essays in the history and philosophy of science. Indianapolis: Hackett (1996).Google Scholar
  26. Eriksson, L., & Hájek, A. (2007). What are degrees of belief? Studia Logica, 86(2), 183–213.CrossRefGoogle Scholar
  27. Feduzi, A., Runde, J., & Zappia, C. (2017). De Finetti and Savage on the normative relevance of imprecise reasoning: A reply to Arthmar and Brady. History of Economic Ideas, 25(1), 211–223.Google Scholar
  28. Fisher, R. A. (1971). The design of experiments (9th ed.). London: Macmillan.Google Scholar
  29. Galavotti, M. C. (2001). Subjectivism, objectivism and objectivity in Bruno de Finetti’s Bayesianism. In D. Corfield & J. Williamson (Eds.), Foundations of Bayesianism (pp. 161–174). New York: Springer.CrossRefGoogle Scholar
  30. Galavotti, M. C. (2008). De Finetti’s philosophy of probability, an introductory essay to de Finetti’s Philosophical lectures on probability. In de Finetti (2008), xv–xxii.Google Scholar
  31. Gibbard, A. (2008a). Rational credence and the value of truth. In T. Szabo Gendler & J. Hawthorne (Eds.), Oxford studies in epistemology (Vol. 2, pp. 143–164). Oxford: Oxford University Press.Google Scholar
  32. Gibbard, A. (2008b). Aiming at the truth over time: Reply to Arntzenius and Swanson. In T. Szabo Gendler & J. Hawthorne (Eds.), Oxford studies in epistemology (Vol. 2, pp. 190–203). Oxford: Oxford University Press.Google Scholar
  33. Gillies, D. (1972). Operationalism. Synthese, 25(1/2), 1–24.CrossRefGoogle Scholar
  34. Gillies, D. (2000). Philosophical theories of probability. London: Routledge.Google Scholar
  35. Goldstein, S. (2017). Bohmian mechanics. The Stanford Encyclopaedia of Philosophy (summer 2017 edition), E. N. Zalta (Ed.). URL https://plato.stanford.edu/archives/sum2017/entries/qm-bohm/.
  36. Hacking, I. (1965). Logic of statistical inference. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  37. Hájek, A. (2003). What conditional probability could not be. Synthese, 137(3), 273–323.CrossRefGoogle Scholar
  38. Hájek, A. (2005). Scotching Dutch books? Philosophical Perspectives, 19(1), 139–151.CrossRefGoogle Scholar
  39. Hájek, A. (2008a). Arguments for – or against – probabilism? British Journal for the Philosophy of Science, 59(4), 793–819.CrossRefGoogle Scholar
  40. Hájek, A. (2008b). Dutch Book arguments. In P. Anand, P. Pattanaik, & C. Puppe (Eds.), The Oxford handbook of rational and social choice (pp. 173–195). Oxford: Oxford University Press.Google Scholar
  41. Hájek, A. (2012). Interpretations of probability. The Stanford Encyclopaedia of Philosophy (winter 2012 edition), E. N. Zalta (Ed.). URL https://plato.stanford.edu/archives/win2012/entries/probability-interpret/.
  42. Hawthorne, J. (1993). Bayesian induction is eliminative induction. Philosophical Topics, 21(1), 99–138.CrossRefGoogle Scholar
  43. Hawthorne, J. (1994). On the nature of Bayesian convergence. In D. Hull, M. Forbes, & R. M. Burian (Eds.), PSA 1994 (Vol. 1, pp. 241–249). East Lansing: Philosophy of Science Association.Google Scholar
  44. Hellman, G. (1997). Bayes and beyond. Philosophy of Science, 64(2), 191–221.CrossRefGoogle Scholar
  45. Howson, C. (2000). Hume's problem: Induction and the justification of belief. Oxford: Oxford University Press.CrossRefGoogle Scholar
  46. Howson, C. (2008). De Finetti, countable additivity, consistency and coherence. British Journal for the Philosophy of Science, 59(1), 1–23.CrossRefGoogle Scholar
  47. Howson, C., & Urbach, P. (1993). Scientific reasoning: The Bayesian approach (2nd ed.). Chicago: Open Court.Google Scholar
  48. Howson, C., & Franklin, A. (1994). Bayesian conditionalization and probability kinematics. British Journal for the Philosophy of Science, 45(2), 451–466.CrossRefGoogle Scholar
  49. Howson, C., & Urbach, P. (2006). Scientific reasoning: The Bayesian approach (3rd ed.). Chicago: Open Court.Google Scholar
  50. Huber, F. (2007). The consistency argument for ranking functions. Studia Logica, 86(2), 299–329.CrossRefGoogle Scholar
  51. Jeffrey, R. (1986). Probabilism and induction. Topoi, 5(1), 51–58.CrossRefGoogle Scholar
  52. Jeffrey, R. (1992). Probability and the art of judgment. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  53. Joyce, J. M. (1998). A nonpragmatic vindication of probabilism. Philosophy of Science, 65(4), 575–603.CrossRefGoogle Scholar
  54. Joyce, J. M. (2005). How probabilities reflect evidence. Philosophical Perspectives, 19(1), 153–178.CrossRefGoogle Scholar
  55. Joyce, J. M. (2009). Accuracy and coherence: Prospects for an alethic epistemology of partial belief. In F. Huber & C. Schmidt-Petri (Eds.), Degrees of belief (Vol. 342, pp. 263–297). New York: Springer.Google Scholar
  56. Joyce, J. M. (2010). A defense of imprecise credences in inference and decision making. Philosophical Perspectives, 24(1), 281–323.CrossRefGoogle Scholar
  57. Kaplan, M. (1996). Decision theory as philosophy. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  58. Kennedy, R., & Chihara, C. (1979). The Dutch Book argument: Its logical flaws, its subjective sources. Philosophical Studies, 36(1), 19–33.CrossRefGoogle Scholar
  59. Kolmogorov, A. N. (1933/1950). Foundations of probability. New York: Chelsea Publishing Company.Google Scholar
  60. Koopman, B. O. (1940a). The axioms and algebra of intuitive probability. Annals of Mathematics, Second Series, 41(2), 269–292.CrossRefGoogle Scholar
  61. Koopman, B. O. (1940b). The bases of probability. Bulletin of the American Mathematical Society, 46(10), 763–774.CrossRefGoogle Scholar
  62. Kyburg, H. (1970). Probability and inductive logic. London: Macmillam.Google Scholar
  63. Kyburg, H. (1978). Subjective probability: Criticisms, reflections and problems. Journal of Philosophical Logic, 7(1), 157–180.CrossRefGoogle Scholar
  64. Leitgeb, H., & Pettigrew, R. (2010a). An objective justification of Bayesianism I: Measuring inaccuracy. Philosophy of Science, 77(2), 201–235.CrossRefGoogle Scholar
  65. Leitgeb, H., & Pettigrew, R. (2010b). An objective justification of Bayesianism II: The consequences of minimizing inaccuracy. Philosophy of Science, 77(2), 236–272.CrossRefGoogle Scholar
  66. Levi, I. (1974). On indeterminate probabilities. Journal of Philosophy, 71(13), 391–418.CrossRefGoogle Scholar
  67. Levi, I. (1980). The enterprise of knowledge: An essay on knowledge, credal probability, and chance. Cambridge: MIT Press.Google Scholar
  68. Levi, I. (1985). Imprecision and indeterminacy in probability judgment. Philosophy of Science, 52(3), 390–409.CrossRefGoogle Scholar
  69. Levi, I. (1986). Hard choices: Decision making under unresolved conflict. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  70. Lewis, D. (1973). Counterfactuals. Oxford: Basil Blackwell.Google Scholar
  71. Lewis, D. (1986). Philosophical papers (Vol. 2). Oxford: Oxford University Press.Google Scholar
  72. Maher, P. (1993). Betting on theories. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  73. Maher, P. (1997). Depragmatized Dutch Book arguments. Philosophy of Science, 64(2), 291–305.CrossRefGoogle Scholar
  74. Mahtani, A. (2012). Diachronic Dutch Book arguments. Philosophical Review, 121(3), 443–450.CrossRefGoogle Scholar
  75. Mellor, D. H. (1995). The facts of causation. London: Routledge.CrossRefGoogle Scholar
  76. Milne, P. (1997). Bruno de Finetti and the logic of conditional events. British Journal for the Philosophy of Science, 48(2), 195–232.CrossRefGoogle Scholar
  77. Mura, A. (2009). Probability and the logic of de Finetti’s trievents. In M. C. Galavotti (Ed.), Bruno de Finetti: Radical probabilist (pp. 201–242). London: College Publications.Google Scholar
  78. Pettigrew, R. (2016). Accuracy and the laws of credence. Oxford: Oxford University Press.Google Scholar
  79. Psillos, S. (1999). Scientific realism: How science tracks truth. London: Routledge.Google Scholar
  80. Psillos, S. (2007). Putting a bridle on irrationality: An appraisal of van Fraassen’s new epistemology. In B. Monton (Ed.), Images of empiricism: Essays on science and stances, with a reply from Bas C. van Fraassen (pp. 134–164). Oxford: Oxford University Press.Google Scholar
  81. Ramsey, P. F. (1926/1980). Truth and probability. In H. E. Kyburg & H. E. Smokler (Eds.), Studies in subjective probability (2nd ed., pp. 23–52). Huntington: Robert E. Kreiger Publishing Co.Google Scholar
  82. Savage, L. (1954/1972). The foundations of statistics (2nd ed.). New York: Dover Publications.Google Scholar
  83. Schick, F. (1986). Dutch bookies and money pumps. Journal of Philosophy, 83(2), 112–119.CrossRefGoogle Scholar
  84. Shimony, A. (1988). An adamite derivation of the calculus of probability. In J. H. Fetzer (Ed.), Probability and causality (pp. 151–161). Dordrecht: D. Reidel.Google Scholar
  85. Skyrms, B. (1984). Pragmatics and empiricism. New Haven: Yale University Press.Google Scholar
  86. Skyrms, B. (1987). Coherence. In N. Rescher (Ed.), Scientific inquiry in philosophical perspective (pp. 225–242). Pittsburgh: University of Pittsburgh Press.Google Scholar
  87. Stalnaker, R. (1968). A theory of conditionals. In N. Rescher (Ed.), Studies in logical theory (pp. 98–112). Oxford: Blackwell.Google Scholar
  88. Suppes, P. (1994). Qualitative theory of subjective probability. In G. Wright & P. Ayton (Eds.), Subjective probability (pp. 18–37). Chichester: John Wiley.Google Scholar
  89. Suppes, P. (2009). Some philosophical reflections on de Finetti’s thought. In M. C. Galavotti (Ed.), Bruno de Finetti: Radical probabilist (pp. 19–39). London: College Publications.Google Scholar
  90. Suppes, P., & Zanotti, M. (1976). Necessary and sufficient conditions for existence of a unique measure strictly agreeing with a qualitative probability ordering. Journal of Philosophical Logic, 5(3), 431–438.Google Scholar
  91. Suppes, P., & Zanotti, M. (1982). Necessary and sufficient qualitative axioms for conditional probability. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 60, 163–169.CrossRefGoogle Scholar
  92. Talbott, W. (2016). Bayesian epistemology. The Stanford Encyclopaedia of Philosophy (winter 2016 edition), E. N. Zalta (Ed.). URL https://plato.stanford.edu/archives/win2016/entries/epistemology-bayesian/.
  93. van Fraassen, B. (1983). Calibration: A frequency justification for personal probability. In R. S. Cohen & L. Laudan (Eds.), Physics, philosophy and psychoanalysis (pp. 295–319). Dordrecht: D. Reidel.Google Scholar
  94. Vicig, P., & Seidenfeld, T. (2012). Bruno de Finetti and imprecision: Imprecise probability does not exist! International Journal of Approximate Reasoning, 53(8), 1115–1123.CrossRefGoogle Scholar
  95. Vineberg, S. (2001). The notion of consistency for partial belief. Philosophical Studies, 102(3), 281–296.CrossRefGoogle Scholar
  96. Vineberg, S. (2016). Dutch Book arguments. The Stanford Encyclopaedia of Philosophy (spring 2011 edition), Edward N. Zalta (Ed.). URL https://plato.stanford.edu/archives/spr2016/entries/dutch-book/.
  97. Walley, P. (1991). Statistical reasoning with imprecise probabilities. London: Chapman and Hall.CrossRefGoogle Scholar
  98. Weisberg, J. (2015). You’ve come a long way, Bayesians. Journal of Philosophical Logic, 44(6), 817–834.CrossRefGoogle Scholar
  99. Williamson, J. (2017). Lectures on inductive reasoning. Oxford: Oxford University Press.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.IHPSTUniversity of TorontoTorontoCanada

Personalised recommendations