Advertisement

Relationalism about mechanics based on a minimalist ontology of matter

  • Antonio Vassallo
  • Dirk-André Deckert
  • Michael Esfeld
Original Paper in Philosophy of Physics

Abstract

This paper elaborates on relationalism about space and time as motivated by a minimalist ontology of the physical world: there are only matter points that are individuated by the distance relations among them, with these relations changing. We assess two strategies to combine this ontology with physics, using classical mechanics as an example. The Humean strategy adopts the standard, non-relationalist physical theories as they stand and interprets their formal apparatus as the means of bookkeeping of the change of the distance relations instead of committing us to additional elements of the ontology. The alternative theoretical strategy seeks to combine the relationalist ontology with a relationalist physical theory that reproduces the predictions of the standard theory in the domain where these are empirically tested. We show that, as things stand, this strategy cannot be accomplished without compromising a minimalist relationalist ontology.

Keywords

Relationalism Parsimony Atomism Matter points Ontic structural realism Humeanism Classical mechanics 

Notes

Acknowledgments

We are grateful to Vincent Lam, Dustin Lazarovici, Andrea Oldofredi and Christian Wüthrich for helpful discussions. A. Vassallo’s work on this paper was supported by the Swiss National Science Foundation, grant no. 105212_149650, while D.-A. Deckert’s work was funded by the junior research group grant Interaction between Light and Matter of the Elite Network of Bavaria.

References

  1. Anderson, E. (2013). The problem of time and quantum cosmology in the relational particle mechanics arena. arXiv:1111.1472v3 [gr-qc].
  2. Anderson, E. (2015). Configuration spaces in fundamental physics. arXiv:1503.01507v2 [gr-qc].
  3. Ariew, R. (Ed.) (2000). G. W. Leibniz and S Clarke: correspondence. Hackett: Indianapolis.Google Scholar
  4. Bach, A. (1997). Indistinguishable classical particles. Berlin: Springer.Google Scholar
  5. Barbour, J. (2003). Scale-invariant gravity: particle dynamics. Classical and Quantum Gravity, 20, 1543–1570.CrossRefGoogle Scholar
  6. Barbour, J. (2012). Shape dynamics. an introduction. In Finster, F., Müller, O., Nardmann, M., Tolksdorf, J., & Zeidler, E. (Eds.) Quantum field theory and gravity (pp. 257–297). Birkhäuser: Basel.Google Scholar
  7. Barbour, J., & Bertotti, B. (1982). Mach’s principle and the structure of dynamical theories. Proceedings of the Royal Society A, 382, 295–306.CrossRefGoogle Scholar
  8. Barbour, J., Foster, B., & Ó Murchadha, N. (2002). Relativity without relativity. Classical and Quantum Gravity, 19, 3217–3248.Google Scholar
  9. Barrett, J.A. (2014). Entanglement and disentanglement in relativistic quantum mechanics. Studies in History and Philosophy of Modern Physics, 48, 168–174.Google Scholar
  10. Belot, G. (1999). Rehabilitating relationalism. International Studies in the Philosophy of Science, 13, 35–52.CrossRefGoogle Scholar
  11. Belot, G. (2000). Geometry and motion. British Journal for the Philosophy of Science, 51(4), 561–595.CrossRefGoogle Scholar
  12. Belot, G. (2001). The principle of sufficient reason. Journal of Philosophy, 98, 55–74.CrossRefGoogle Scholar
  13. Belot, G. (2011). Geometric possibility. Oxford: Oxford University Press.Google Scholar
  14. Bhogal, H., & Perry, Z.R. (2016). What the Humean should say about entanglement. Noûs. doi: 10.1111/nous.12095.
  15. Blackburn, S. (1990). Filling in space. Analysis, 50, 62–65.Google Scholar
  16. Callender, C. (2015). One world, one beable. Synthese, 192(10), 3153–3177.Google Scholar
  17. Colin, S., & Struyve, W. (2007). A Dirac sea pilot-wave model for quantum field theory. Journal of Physics A, 40(26), 7309–7341.CrossRefGoogle Scholar
  18. Deckert, D. -A. (2010). Electrodynamic absorber theory – a mathematical study. Tönning: Der Andere Verlag.Google Scholar
  19. Dürr, D., Goldstein, S., & Zanghì, N. (2013). Quantum physics without quantum philosophy. Berlin: Springer.CrossRefGoogle Scholar
  20. Earman, J. (1989). World enough and space-time. Absolute versus relational theories of spacetime. Cambridge, Massachusetts: MIT Press.Google Scholar
  21. Earman, J. (2002). Thoroughly modern mcTaggart or what mcTaggart would have said if he had read the general theory of relativity. Philosopher’s Imprint, 2(3). http://www.philosophersimprint.org/002003/.
  22. Einstein, A., & Infeld, L. (1949). On the motion of particles in general relativity theory. Canadian Journal of Mathematics, 1, 209–241.CrossRefGoogle Scholar
  23. Esfeld, M. (2014). Quantum Humeanism, or: physicalism without properties. The Philosophical Quarterly, 64(256), 453–470.Google Scholar
  24. Esfeld, M., & Lam, V. (2011). Ontic structural realism as a metaphysics of objects. In A., & Bokulich, P. (Eds.) Scientific structuralism (pp. 143–159). Dordrecht: Springer.Google Scholar
  25. Frankel, T. (1997). The geometry of physics. Cambridge: Cambridge University Press.Google Scholar
  26. French, S. (2014). The structure of the world metaphysics and representation. Oxford: Oxford University Press.Google Scholar
  27. Gerhardt, C.I. (1890). Die philosophischen Schriften von G. W. Leibniz Band 7. Berlin: Weidmannsche Verlagsbuchhandlung.Google Scholar
  28. Gryb, S., & Thébault, K. P. Y. (2016). Time remains. British Journal for the Philosophy of Science. doi: 10.1093/bjps/axv009.
  29. Hacking, I. (1975). The identity of indiscernibles. Journal of Philosophy, 72, 249–256.CrossRefGoogle Scholar
  30. Hall, N. (2009). Humean reductionism about laws of nature. Unpublished manuscript. http://philpapers.org/rec/halhra.
  31. Holland, P. (2001a). Hamiltonian theory of wave and particle in quantum mechanics I: Liouville’s theorem and the interpretation of the de broglie-Bohm theory. Il Nuovo Cimento B, 116, 1043–1070.Google Scholar
  32. Holland, P. (2001b). Hamiltonian theory of wave and particle in quantum mechanics II: Hamilton-jacobi theory and particle back-reaction. Il Nuovo Cimento B, 116, 1143–1172.Google Scholar
  33. Huggett, N. (2006). The regularity account of relational spacetime. Mind, 115 (457), 41–73.CrossRefGoogle Scholar
  34. Ladyman, J. (2007). On the identity and diversity of objects in a structure. Proceedings of the Aristotelian Society, Supplementary Volume, 81(1), 23–43.Google Scholar
  35. Ladyman, J., & Ross, D. (2007). Every thing must go: metaphysics naturalized. New York: Oxford University Press.Google Scholar
  36. Lanczos, C. (1970). The variational principles of mechanics. University of Toronto Press, fourth edition.Google Scholar
  37. Lewis, D. (1986). On the plurality of worlds. Oxford: Blackwell.Google Scholar
  38. Locke, J. (1690). An essay concerning human understanding.Google Scholar
  39. Mach, E. (1919). The science of mechanics: a critical and historical account of its development, 4th edn., Translation by Thomas J. McCormack. Chicago: Open Court.Google Scholar
  40. Maudlin, T. (1993). Buckets of water and waves of space: why spacetime is probably a substance. Philosophy of Science, 60, 183–203.CrossRefGoogle Scholar
  41. Maudlin, T. (2002). Thoroughly muddled mcTaggart or how to abuse gauge freedom to create metaphysical monstrosities. Philosopher’s Imprint, 2(4).Google Scholar
  42. Maudlin, T. (2007). The metaphysics within physics. New York: Oxford University Press.Google Scholar
  43. McTaggart, J.E. (1908). The unreality of time. Mind, 17(68), 457–474.CrossRefGoogle Scholar
  44. Miller, E. (2014). Quantum entanglement, Bohmian mechanics, and Humean supervenience. Australasian Journal of Philosophy, 92, 567–583.Google Scholar
  45. Misner, C.W., Thorne, K.S., & Wheeler, J.A. (1973). Gravitation. Freeman: San Francisco.Google Scholar
  46. Muller, F.A. (2011). How to defeat Wüthrich’s abysmal embarassment argument against space-time structuralism. Philosophy of Science, 78, 1046–1057.CrossRefGoogle Scholar
  47. Pooley, O. (2013). Substantivalist and relationalist approaches to spacetime. In Batterman, R. (Ed.) The oxford handbook of philosophy of physics (pp. 522–586). Oxford: Oxford University Press.Google Scholar
  48. Pooley, O., & Brown, H. (2002). Relationalism rehabilitated? I: classical mechanics. British Journal for the Philosophy of Science, 53, 183–204.CrossRefGoogle Scholar
  49. Rovelli, C. (2004). Quantum gravity. Cambridge: Cambridge University Press.Google Scholar
  50. Saunders, S. (2006). Are quantum particles objects? Analysis, 66, 52–63.CrossRefGoogle Scholar
  51. Saunders, S. (2013). Rethinking newton’s principia. Philosophy of Science, 80 (1), 22–48.CrossRefGoogle Scholar
  52. Vassallo, A. (2015). Can Bohmian mechanics be made background independent? Studies in History and Philosophy of Modern Physics, 52, 242–250.Google Scholar
  53. Vassallo, A., & Esfeld, M. (2016). Leibnizian relationalism for general relativistic physics. Studies in History and Philosophy of Modern Physics. doi: 10.1016/j.shpsb.2016.08.006
  54. Vassallo, A., & Ip, P.H. (2016). On the conceptual issues surrounding the notion of relational Bohmian dynamics. Foundations of Physics, 46, 943–972.CrossRefGoogle Scholar
  55. Wheeler, J.A. (1962). Geometrodynamics. New York: Academic Press.Google Scholar
  56. Wüthrich, C. (2009). Challenging the spacetime structuralist. Philosophy of Science, 76, 1039–1051.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Faculté des Lettres, Section de PhilosophieUniversité de LausanneLausanneSwitzerland
  2. 2.Mathematisches InstitutLudwig-Maximilians-Universität MünchenMünchenGermany

Personalised recommendations