European Journal for Philosophy of Science

, Volume 7, Issue 1, pp 151–173 | Cite as

Theoretical fertility McMullin-style

Original paper in Philosophy of Science

Abstract

A theory’s fertility is one of the standard theoretical virtues. But how is it to be construed? In current philosophical discourse, particularly in the realism debate, theoretical fertility is usually understood in terms of novel success: a theory is fertile if it manages to make successful novel predictions. Another, more permissible, notion of fertility can be found in the work of Ernan McMullin. This kind of fertility, McMullin claims, gives us just as strong (or even stronger) grounds for realism. My paper critically assesses McMullin’s notion of fertility and its realist rationale. It concludes that McMullin’s preferred example, namely the fertile development of the Bohr-Sommerfeld model of the atom, does not support McMullin’s argument for realism. Although the implications for the realism debate are as of yet unclear, the case study offers some important methodological lessons.

Keywords

Theoretical fertility Theoretical virtue Novel success Realism Idealization Positive heuristics Bohr-Sommerfeld model 

References

  1. Bohr, N. (1915). On the series spectrum of hydrogen and the structure of the atom. Philosophical Magazine, 29, 332–335.CrossRefGoogle Scholar
  2. Brush, S. G. (1976). The kind of motion we call heat: a history of the kinetic theory of gases in the 19th century. Amsterdam: North-Holland Pub Company.Google Scholar
  3. Cartwright, N. (1983). How the laws of physics lie. Oxford: Oxford University Press.CrossRefGoogle Scholar
  4. Clark, P. (1976). Atomism versus theromodynamics. In C. Howson (Ed.), Method and appraisal in the physical sciences: the critical background to modern science, 1800–1905. Cambridge: Cambridge University Press.Google Scholar
  5. Curtis, W. E. (1914). Wave-lengths of hydrogen lines and determination of the series constant. Proceedings of the Royal Society of London. Series A, 90(622), 605–620.CrossRefGoogle Scholar
  6. de Regt, H. W. (1996). Philosophy and the kinetic theory of gases. The British Journal for the Philosophy of Science, 47(1), 31–62.CrossRefGoogle Scholar
  7. de Regt, H. W. (2001). Spacetime visualisation and the intelligibility of physical theories. Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics, 32(2), 243–265.CrossRefGoogle Scholar
  8. Eckert, M., & Märker, K. (2000). Arnold Sommerfeld. Wissenschaftlicher briefwechsel. Band 1: 1892–1918. Berlin: Deutsches Museum Verlag für Geschichte der Naturwissenschaften und der Tecknik.Google Scholar
  9. Forman, P. (1968). The doublet riddle and atomic physics circa 1924. Isis, 59(2), 156–174.CrossRefGoogle Scholar
  10. Hoyer, U. (1981). Work on atomic physics (1912–1917). Vol. 2, Niels Bohr. Collected works. Amsterdam: North-Holland.Google Scholar
  11. Jammer, M. (1989). The conceptual development of quantum mechanics: Tomash.Google Scholar
  12. Kragh, H. (1985). The fine structure of hydrogen and the gross structure of the physics community, 1916–26. Historical Studies in the Physical Sciences, 15(2), 67–125.CrossRefGoogle Scholar
  13. Kragh, H. (2012). Niels Bohr and the quantum atom: The Bohr model of atomic structure 1913–1925: Oxford University Press.Google Scholar
  14. Kuhn, T. S. (1977). Objetivity, value judgment, and theory choice. In The essential tension. Chicago: University of Chicago Press.Google Scholar
  15. Ladyman, J. (1999). Review. A novel defense of scientific realism. Jarrett Leplin. The British Journal for the Philosophy of Science, 50(1), 181–188.CrossRefGoogle Scholar
  16. Lakatos, I. (1970). Falsification and the methodology of scientific research programmes. In I. Lakatos & A. Musgrave (Eds.), Criticism and the growth of knowledge. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  17. Lakatos, I. (1978). In J. Worrall & G. Currie (Eds.), The methodology of scientific research programmes: volume 1: philosophical papers. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  18. Laudan, L. (1981). A confutation of convergent realism. Philosophy of Science, 48(1), 19–49.CrossRefGoogle Scholar
  19. Magnus, P., & Callender, C. (2004). Realist Ennui and the base rate fallacy. Philosophy of Science, 71(3), 320–338.CrossRefGoogle Scholar
  20. McMullin, E. (1968). What do physical models tell us? Studies in Logic and the Foundations of Mathematics, 52, 385–396.CrossRefGoogle Scholar
  21. McMullin, E. (1976). The fertility of theory and the unit for appraisal in science. In R. S. Cohen (Ed.), Essays in the memory of Imre Lakatos. Dordrecht: D. Reidel Publishing Company.Google Scholar
  22. McMullin, E. (1982). Values in acience. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association Two: Symposia and Invited Papers 3–28.Google Scholar
  23. McMullin, E. (1984). A case for scientific realism. In J. Leplin (Ed.), Scientific realism. Berkeley: University of California Press.Google Scholar
  24. McMullin, E. (1985). Galilean idealization. Studies in History and Philosophy of Science Part A, 16(3), 247–273.CrossRefGoogle Scholar
  25. Mehra, J., & Rechenberg, H. (1982). The historical development of quantum Theory. 2 vols. Vol. 1.. New York: Springer.CrossRefGoogle Scholar
  26. Nolan, D. (1999). Is fertility virtuous in its own right? The British Journal for the Philosophy of Science, 50(2), 265–282.CrossRefGoogle Scholar
  27. Nyhof, J. (1988). Philosophical objections to the kinetic theory. The British Journal for the Philosophy of Science, 39(1), 81–109.CrossRefGoogle Scholar
  28. Pais, A. (1991). Neils Bohr’s times: in physics, philosophy, and polity. Oxford: Clarendon.Google Scholar
  29. Paschen, F. (1916). Bohrs Heliumlinien. Annalen der Physik, 355(16), 901–940.CrossRefGoogle Scholar
  30. Pauli, W. (1979). Wissenschaftlicher Briefwechsel Mit Bohr, Einstein, Heisenberg, Ua, Bd. 1, 1919–1924.. New York: Springer.Google Scholar
  31. Pauli, W. (2015) Nobel lecture: exclusion principle and quantum mechanics. Nobelprize.org. Nobel Media AB 2014, 1946. Available from http://www.nobelprize.org/nobel_prizes/physics/laureates/1945/pauli-lecture.html. Accessed 13 Feb 2015.
  32. Psillos, S. (1999). Scientific realism: how science tracks truth. London: Routledge.Google Scholar
  33. Robotti, N. (1983). The spectrum of Ζ puppis and the historical evolution of empirical data. Historical studies in the physical sciences:123–145.Google Scholar
  34. Saatsi, J. forthcoming. On historical induction, Old and New. Synthese.Google Scholar
  35. Saatsi, J., & Vickers, P. (2011). Miraculous Success? Inconsistency and Untruth in Kirchhoff’s diffraction theory. British Journal for the Philosophy of Science, 62(1), 29–46.CrossRefGoogle Scholar
  36. Scerri, E. R., & Worrall, J. (2001). Prediction and the periodic table. Studies in History and Philosophy of Science Part A, 32(3), 407–452.CrossRefGoogle Scholar
  37. Schindler, S. (2013). Novelty. Coherence, and Mendeleev’s Periodic Table Studies in History and Philosophy of Science Part A, 45, 62–69.CrossRefGoogle Scholar
  38. Segall, R. (2008). Fertility and scientific realism. The British Journal for the Philosophy of Science, 59(2), 237–246.CrossRefGoogle Scholar
  39. Serwer, D. (1977). Unmechanischer Zwang: Pauli, Heisenberg, and the rejection of the mechanical atom, 1923–1925. Historical Studies in the Physical Sciences, 8, 189–256.CrossRefGoogle Scholar
  40. Sommerfeld, A. (1916a). Zur Quantentheorie Der Spektrallinien. Annalen der Physik, 356(17), 1–94.CrossRefGoogle Scholar
  41. Sommerfeld, A. (1916b). Zur Theorie Der Balmerschen Serie. Sitzungsberichte der Königlich Bayerischen Akademie der Wissenschaften Matematisch-physikalische Klasse:425–500.Google Scholar
  42. Sommerfeld, A. (1923). Atomic structure and spectral lines. Translated by H. Brose. London: Methuen & Co. Ltd.Google Scholar
  43. Stanford, P. K. (2006). Exceeding our grasp: science, history, and the problem of unconceived alternatives. Oxford: Oxford University Press.CrossRefGoogle Scholar
  44. Vickers, P. (2012). Historical magic in old quantum theory? European Journal for Philosophy of Science, 2(1), 1–19.CrossRefGoogle Scholar
  45. Vickers, P. (2013). A confrontation of convergent realism. Philosophy of Science, 80(2), 189–211.CrossRefGoogle Scholar
  46. Worrall, J. (1989a). Fresnel, poisson and the ‘white spot’: the role of successful prediction in theory-acceptance. In D. Gooding, T. Pinch, & S. Schaffer (Eds.), The uses of experiment. Cambridge: Cambridge University Press.Google Scholar
  47. Worrall, J. (1989b). Structural realism: the best of both worlds? Dialectica, 43(1–2), 99–124.CrossRefGoogle Scholar
  48. Worrall, J. (2002). New Evidence for Old. In P. Gardenfors (Ed.), In the scope of logic, methodology and philosophy of science. Dordrecht: Kluwer.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Center for Science Studies, Department of MathematicsAarhus UniversityAarhusDenmark

Personalised recommendations