Advertisement

European Journal for Philosophy of Science

, Volume 5, Issue 3, pp 399–417 | Cite as

Adding logic to the toolbox of molecular biology

  • Giovanni Boniolo
  • Marcello D’Agostino
  • Mario Piazza
  • Gabriele Pulcini
Original paper in Philosophy of Biology

Abstract

The aim of this paper is to argue that logic can play an important role in the “toolbox” of molecular biology. We show how biochemical pathways, i.e., transitions from a molecular aggregate to another molecular aggregate, can be viewed as deductive processes. In particular, our logical approach to molecular biology — developed in the form of a natural deduction system — is centered on the notion of Curry-Howard isomorphism, a cornerstone in nineteenth-century proof-theory.

Keywords

Substructural logics Natural deduction Curry-Howard isomorphism State transitions Biochemical pathways Zsyntax 

Notes

Acknowledgments

G.P. acknowledges the support from FAPESP Post-Doc Grant 2013/22371-0, São Paulo State, Brazil.

References

  1. Aliseda, A. (2006). Abductive reasoning Vol. 330. Netherlands: Springer.Google Scholar
  2. Beall, J.C., & Restall, G. (2006). Logical pluralism. Oxford: Clarendon Press.Google Scholar
  3. Bechtel, W. (1998). Representations and cognitive explanations: assessing the dynamicist’s challenge in cognitive science. Cognitive Science, 22, 295–318.CrossRefGoogle Scholar
  4. Bertot, Y., & Castéran, P. (2004). Interactive theorem proving and program development, Coq’Art: the calculus of inductive constructions. Berlin: Springer.CrossRefGoogle Scholar
  5. Boniolo, G. (2009). Laws of nature: the kantian approach. In M. Bitbol, P. Kerszberg, & J. Petitot (Eds.), Constituting objectivity: transcendental perspectives on modern physics, Western Ontario series in the philosophy of science (pp. 183–201). Springer.Google Scholar
  6. Boniolo, G., D’Agostino, M., & Di Fiore, P. (2010). Zsyntax: a formal language for molecular biology with projected applications in text mining and biological prediction. PLoS ONE, 5(3), e9511.CrossRefGoogle Scholar
  7. Boniolo, G., D’Agostino, M., Piazza, M., & Pulcini, G. (2013). A logic of non-monotonic interactions. Journal of Applied Logic, 11, 52–62.CrossRefGoogle Scholar
  8. Boniolo, G., Petrovich, C., & Pisent, G. (2002). On the philosophical status of nuclear physics. Foundations of Science, 7, 425–452.CrossRefGoogle Scholar
  9. Cartwright, N. (1983). How the laws of physics lie. Oxford: Oxford University Press.CrossRefGoogle Scholar
  10. Cartwright, N., Shomar, T., & Suárez, M. (1995). The tool-box of science. Tools for the building of models with a superconductivity example. Poznań Studies in the Philosophy of the Sciences and the Humanities, 44, 137–149.Google Scholar
  11. Chauduri, K., & Despeyroux, J. (2010). A hybrid linear logic for constrained transition systems with applications to molecular biology. Technical report, INRIA-HAL. Available at http://www-sop.inria.fr/members/Joelle.Despeyroux/papers/hyll_report.pdf.
  12. Cook, R.T. (2010). Let a thousand flowers bloom: a tour of logical pluralism. Philosophical Compass, 5(6), 492–504.CrossRefGoogle Scholar
  13. Curry, H. (1934). Functionality in combinatory logic. Proceedings of the National Academy of Science, 20, 584–590.CrossRefGoogle Scholar
  14. D’Agostino, M., Gabbay, D.M., & Broda, K. (1999). Tableau methods for substructural logics. In M. D’Agostino, D.M. Gabbay, R. Hähnle, & J. Posegga (Eds.), Handbook of tableaux methods (pp. 397–468). Kluwer Academic.Google Scholar
  15. D’Agostino, M., Piazza, M., & Pulcini, G. (2014). A logical calculus for controlled monotonicity. Journal of Applied Logic, 12(4), 558–569.CrossRefGoogle Scholar
  16. Danos, V., & Laneve, C. (2004). Formal molecular biology. Theoretical Computer Science, 325, 69–110.CrossRefGoogle Scholar
  17. de Queiroz, R.J.G.B, de Oliveira, A.G., & Gabbay, D.M. (2011). The functional interpretation of logical deduction. London: Imperial College Press/World Scientific.Google Scholar
  18. Gabbay, D.M. (1993). How to construct a logic for your application. In H.J. Ohlbach (Ed.), GWAI ‘92: advances in artificial intelligence of lecture notes in computer science, (Vol. 671 pp. 1–30). Berlin: Springer.Google Scholar
  19. Gabbay, D.M. (1994). What is a logical system? In D.M. Gabbay (Ed.), What is a logical system? (pp. 179–216). Oxford: Clarendon Press.Google Scholar
  20. Giere, R.N. (2006). Scientific pluralism. University of Minnesota Press.Google Scholar
  21. Girard, J.-Y. (1995). Linear logic: its syntax and semantics. In J.-Y. Girard, Y. Lafont, & L. Regnier (Eds.), Advances in linear logic of London mathematical society lecture notes series, (Vol. 222 pp. 1–42). Cambridge University Press.Google Scholar
  22. Girard, J.-Y., Lafont, Y., & Taylor, P. (1989). Proofs and types. Cambridge: Cambridge University Press.Google Scholar
  23. Girard, J.Y. (1987). Linear logic. Theoretical Computer Science, 50, 1–101.CrossRefGoogle Scholar
  24. Hamilton, A. (2007). Laws of biology, laws of nature: problems and (dis)solutions. Philosophy Compass, 2(3), 592–610.CrossRefGoogle Scholar
  25. Haufe, C. (2013). From necessary chances to biological laws. British Journal for the Philosophy of Science, 64(2), 279–295.CrossRefGoogle Scholar
  26. Howard, W.A. (1980). The formulae-as-types notion of construction. In J.P. Seldin, & J.R. Hindley (Eds.), To H. B. Curry: essays on combinatory logic, lambda calculus and formalism (pp. 479–490). London: Academic Press.Google Scholar
  27. Keller, E.F. (2000). Models of and models for. Theory and practice in contemporary biology. Philosophy of Science, 67, S72—S86.CrossRefGoogle Scholar
  28. Kellert, S.H., Longino, H.E., & Waters, C.K. (Eds.) (2006). Scientific pluralism. University of Minnesota Press.Google Scholar
  29. Lipton, P. (2004). Inference to the best explanation, 2nd edn. London: Routledge.Google Scholar
  30. Norton, J. (2012). Approximations and idealizations: why the difference matters. Philosophy of Science, 79, 207–232.CrossRefGoogle Scholar
  31. Piazza, M. (2001). Exchange rules. Journal of Symbolic Logic, 66, 509–516.CrossRefGoogle Scholar
  32. Raerinne, J. (2013). Stability and lawlikeness. Biology and Philosophy, 28(5), 833–851.CrossRefGoogle Scholar
  33. Redhead, M. (1980). Models in physics. The British Journal for the Philosophy of Science, 31, 145–163.CrossRefGoogle Scholar
  34. Van Benthem, J. (2012). The logic of empirical theories revisited. Synthese, 186, 775–792.CrossRefGoogle Scholar
  35. Weisberg, M. (2013). Simulation and Similarity: using models to understand the world. Oxford: Oxford University Press.CrossRefGoogle Scholar
  36. Winsberg, E. (2001). Simulations, models and theories: complex physical systems and their representation. Philosophy of Science, 68, S442–S454.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Giovanni Boniolo
    • 1
    • 2
  • Marcello D’Agostino
    • 3
  • Mario Piazza
    • 4
  • Gabriele Pulcini
    • 5
  1. 1.Dipartimento di Scienze della SaluteUniversity of MilanMilanItaly
  2. 2.Department of Experimental Oncology, Istituto Europeo di OncologiaMilanItaly
  3. 3.Department of Economics and ManagementUniversity of FerraraFerraraItaly
  4. 4.Department of PhilosophyUniversity of Chieti-PescaraPescaraItaly
  5. 5.Centre for Logic, Epistemology and History of Science – State University of CampinasCampinasBrazil

Personalised recommendations